Step |
Hyp |
Ref |
Expression |
1 |
|
qusgrp.h |
|- H = ( G /s ( G ~QG S ) ) |
2 |
|
qusadd.v |
|- V = ( Base ` G ) |
3 |
|
qusadd.p |
|- .+ = ( +g ` G ) |
4 |
|
qusadd.a |
|- .+b = ( +g ` H ) |
5 |
1
|
a1i |
|- ( S e. ( NrmSGrp ` G ) -> H = ( G /s ( G ~QG S ) ) ) |
6 |
2
|
a1i |
|- ( S e. ( NrmSGrp ` G ) -> V = ( Base ` G ) ) |
7 |
|
nsgsubg |
|- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
8 |
|
eqid |
|- ( G ~QG S ) = ( G ~QG S ) |
9 |
2 8
|
eqger |
|- ( S e. ( SubGrp ` G ) -> ( G ~QG S ) Er V ) |
10 |
7 9
|
syl |
|- ( S e. ( NrmSGrp ` G ) -> ( G ~QG S ) Er V ) |
11 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
12 |
7 11
|
syl |
|- ( S e. ( NrmSGrp ` G ) -> G e. Grp ) |
13 |
2 8 3
|
eqgcpbl |
|- ( S e. ( NrmSGrp ` G ) -> ( ( a ( G ~QG S ) p /\ b ( G ~QG S ) q ) -> ( a .+ b ) ( G ~QG S ) ( p .+ q ) ) ) |
14 |
2 3
|
grpcl |
|- ( ( G e. Grp /\ p e. V /\ q e. V ) -> ( p .+ q ) e. V ) |
15 |
14
|
3expb |
|- ( ( G e. Grp /\ ( p e. V /\ q e. V ) ) -> ( p .+ q ) e. V ) |
16 |
12 15
|
sylan |
|- ( ( S e. ( NrmSGrp ` G ) /\ ( p e. V /\ q e. V ) ) -> ( p .+ q ) e. V ) |
17 |
5 6 10 12 13 16 3 4
|
qusaddval |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ Y e. V ) -> ( [ X ] ( G ~QG S ) .+b [ Y ] ( G ~QG S ) ) = [ ( X .+ Y ) ] ( G ~QG S ) ) |