| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qusaddf.u |  |-  ( ph -> U = ( R /s .~ ) ) | 
						
							| 2 |  | qusaddf.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | qusaddf.r |  |-  ( ph -> .~ Er V ) | 
						
							| 4 |  | qusaddf.z |  |-  ( ph -> R e. Z ) | 
						
							| 5 |  | qusaddf.e |  |-  ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .x. b ) .~ ( p .x. q ) ) ) | 
						
							| 6 |  | qusaddf.c |  |-  ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) | 
						
							| 7 |  | qusaddf.p |  |-  .x. = ( +g ` R ) | 
						
							| 8 |  | qusaddf.a |  |-  .xb = ( +g ` U ) | 
						
							| 9 |  | eqid |  |-  ( x e. V |-> [ x ] .~ ) = ( x e. V |-> [ x ] .~ ) | 
						
							| 10 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 11 | 2 10 | eqeltrdi |  |-  ( ph -> V e. _V ) | 
						
							| 12 |  | erex |  |-  ( .~ Er V -> ( V e. _V -> .~ e. _V ) ) | 
						
							| 13 | 3 11 12 | sylc |  |-  ( ph -> .~ e. _V ) | 
						
							| 14 | 1 2 9 13 4 | qusval |  |-  ( ph -> U = ( ( x e. V |-> [ x ] .~ ) "s R ) ) | 
						
							| 15 | 1 2 9 13 4 | quslem |  |-  ( ph -> ( x e. V |-> [ x ] .~ ) : V -onto-> ( V /. .~ ) ) | 
						
							| 16 | 14 2 15 4 7 8 | imasplusg |  |-  ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( ( x e. V |-> [ x ] .~ ) ` p ) , ( ( x e. V |-> [ x ] .~ ) ` q ) >. , ( ( x e. V |-> [ x ] .~ ) ` ( p .x. q ) ) >. } ) | 
						
							| 17 | 1 2 3 4 5 6 9 16 | qusaddflem |  |-  ( ph -> .xb : ( ( V /. .~ ) X. ( V /. .~ ) ) --> ( V /. .~ ) ) |