| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qusaddf.u |  |-  ( ph -> U = ( R /s .~ ) ) | 
						
							| 2 |  | qusaddf.v |  |-  ( ph -> V = ( Base ` R ) ) | 
						
							| 3 |  | qusaddf.r |  |-  ( ph -> .~ Er V ) | 
						
							| 4 |  | qusaddf.z |  |-  ( ph -> R e. Z ) | 
						
							| 5 |  | qusaddf.e |  |-  ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .x. b ) .~ ( p .x. q ) ) ) | 
						
							| 6 |  | qusaddf.c |  |-  ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) | 
						
							| 7 |  | qusaddflem.f |  |-  F = ( x e. V |-> [ x ] .~ ) | 
						
							| 8 |  | qusaddflem.g |  |-  ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) | 
						
							| 9 |  | fvex |  |-  ( Base ` R ) e. _V | 
						
							| 10 | 2 9 | eqeltrdi |  |-  ( ph -> V e. _V ) | 
						
							| 11 |  | erex |  |-  ( .~ Er V -> ( V e. _V -> .~ e. _V ) ) | 
						
							| 12 | 3 10 11 | sylc |  |-  ( ph -> .~ e. _V ) | 
						
							| 13 | 1 2 7 12 4 | quslem |  |-  ( ph -> F : V -onto-> ( V /. .~ ) ) | 
						
							| 14 | 3 10 7 6 5 | ercpbl |  |-  ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) | 
						
							| 15 | 13 14 8 6 | imasaddflem |  |-  ( ph -> .xb : ( ( V /. .~ ) X. ( V /. .~ ) ) --> ( V /. .~ ) ) |