Step |
Hyp |
Ref |
Expression |
1 |
|
qusaddf.u |
|- ( ph -> U = ( R /s .~ ) ) |
2 |
|
qusaddf.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
qusaddf.r |
|- ( ph -> .~ Er V ) |
4 |
|
qusaddf.z |
|- ( ph -> R e. Z ) |
5 |
|
qusaddf.e |
|- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .x. b ) .~ ( p .x. q ) ) ) |
6 |
|
qusaddf.c |
|- ( ( ph /\ ( p e. V /\ q e. V ) ) -> ( p .x. q ) e. V ) |
7 |
|
qusaddflem.f |
|- F = ( x e. V |-> [ x ] .~ ) |
8 |
|
qusaddflem.g |
|- ( ph -> .xb = U_ p e. V U_ q e. V { <. <. ( F ` p ) , ( F ` q ) >. , ( F ` ( p .x. q ) ) >. } ) |
9 |
|
fvex |
|- ( Base ` R ) e. _V |
10 |
2 9
|
eqeltrdi |
|- ( ph -> V e. _V ) |
11 |
|
erex |
|- ( .~ Er V -> ( V e. _V -> .~ e. _V ) ) |
12 |
3 10 11
|
sylc |
|- ( ph -> .~ e. _V ) |
13 |
1 2 7 12 4
|
quslem |
|- ( ph -> F : V -onto-> ( V /. .~ ) ) |
14 |
3 10 7 6 5
|
ercpbl |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( F ` a ) = ( F ` p ) /\ ( F ` b ) = ( F ` q ) ) -> ( F ` ( a .x. b ) ) = ( F ` ( p .x. q ) ) ) ) |
15 |
13 14 8
|
imasaddvallem |
|- ( ( ph /\ X e. V /\ Y e. V ) -> ( ( F ` X ) .xb ( F ` Y ) ) = ( F ` ( X .x. Y ) ) ) |
16 |
3
|
3ad2ant1 |
|- ( ( ph /\ X e. V /\ Y e. V ) -> .~ Er V ) |
17 |
10
|
3ad2ant1 |
|- ( ( ph /\ X e. V /\ Y e. V ) -> V e. _V ) |
18 |
16 17 7
|
divsfval |
|- ( ( ph /\ X e. V /\ Y e. V ) -> ( F ` X ) = [ X ] .~ ) |
19 |
16 17 7
|
divsfval |
|- ( ( ph /\ X e. V /\ Y e. V ) -> ( F ` Y ) = [ Y ] .~ ) |
20 |
18 19
|
oveq12d |
|- ( ( ph /\ X e. V /\ Y e. V ) -> ( ( F ` X ) .xb ( F ` Y ) ) = ( [ X ] .~ .xb [ Y ] .~ ) ) |
21 |
16 17 7
|
divsfval |
|- ( ( ph /\ X e. V /\ Y e. V ) -> ( F ` ( X .x. Y ) ) = [ ( X .x. Y ) ] .~ ) |
22 |
15 20 21
|
3eqtr3d |
|- ( ( ph /\ X e. V /\ Y e. V ) -> ( [ X ] .~ .xb [ Y ] .~ ) = [ ( X .x. Y ) ] .~ ) |