Metamath Proof Explorer


Theorem qusbas

Description: Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015)

Ref Expression
Hypotheses qusbas.u
|- ( ph -> U = ( R /s .~ ) )
qusbas.v
|- ( ph -> V = ( Base ` R ) )
qusbas.e
|- ( ph -> .~ e. W )
qusbas.r
|- ( ph -> R e. Z )
Assertion qusbas
|- ( ph -> ( V /. .~ ) = ( Base ` U ) )

Proof

Step Hyp Ref Expression
1 qusbas.u
 |-  ( ph -> U = ( R /s .~ ) )
2 qusbas.v
 |-  ( ph -> V = ( Base ` R ) )
3 qusbas.e
 |-  ( ph -> .~ e. W )
4 qusbas.r
 |-  ( ph -> R e. Z )
5 eqid
 |-  ( x e. V |-> [ x ] .~ ) = ( x e. V |-> [ x ] .~ )
6 1 2 5 3 4 qusval
 |-  ( ph -> U = ( ( x e. V |-> [ x ] .~ ) "s R ) )
7 1 2 5 3 4 quslem
 |-  ( ph -> ( x e. V |-> [ x ] .~ ) : V -onto-> ( V /. .~ ) )
8 6 2 7 4 imasbas
 |-  ( ph -> ( V /. .~ ) = ( Base ` U ) )