Description: Base set of a quotient structure. (Contributed by Mario Carneiro, 23-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusbas.u | |- ( ph -> U = ( R /s .~ ) )  | 
					|
| qusbas.v | |- ( ph -> V = ( Base ` R ) )  | 
					||
| qusbas.e | |- ( ph -> .~ e. W )  | 
					||
| qusbas.r | |- ( ph -> R e. Z )  | 
					||
| Assertion | qusbas | |- ( ph -> ( V /. .~ ) = ( Base ` U ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | qusbas.u | |- ( ph -> U = ( R /s .~ ) )  | 
						|
| 2 | qusbas.v | |- ( ph -> V = ( Base ` R ) )  | 
						|
| 3 | qusbas.e | |- ( ph -> .~ e. W )  | 
						|
| 4 | qusbas.r | |- ( ph -> R e. Z )  | 
						|
| 5 | eqid | |- ( x e. V |-> [ x ] .~ ) = ( x e. V |-> [ x ] .~ )  | 
						|
| 6 | 1 2 5 3 4 | qusval | |- ( ph -> U = ( ( x e. V |-> [ x ] .~ ) "s R ) )  | 
						
| 7 | 1 2 5 3 4 | quslem | |- ( ph -> ( x e. V |-> [ x ] .~ ) : V -onto-> ( V /. .~ ) )  | 
						
| 8 | 6 2 7 4 | imasbas | |- ( ph -> ( V /. .~ ) = ( Base ` U ) )  |