| Step |
Hyp |
Ref |
Expression |
| 1 |
|
quseccl0.e |
|- .~ = ( G ~QG S ) |
| 2 |
|
quseccl0.h |
|- H = ( G /s .~ ) |
| 3 |
|
quseccl0.c |
|- C = ( Base ` G ) |
| 4 |
|
quseccl0.b |
|- B = ( Base ` H ) |
| 5 |
1
|
ovexi |
|- .~ e. _V |
| 6 |
5
|
ecelqsi |
|- ( X e. C -> [ X ] .~ e. ( C /. .~ ) ) |
| 7 |
6
|
adantl |
|- ( ( G e. V /\ X e. C ) -> [ X ] .~ e. ( C /. .~ ) ) |
| 8 |
2
|
a1i |
|- ( ( G e. V /\ X e. C ) -> H = ( G /s .~ ) ) |
| 9 |
3
|
a1i |
|- ( ( G e. V /\ X e. C ) -> C = ( Base ` G ) ) |
| 10 |
5
|
a1i |
|- ( ( G e. V /\ X e. C ) -> .~ e. _V ) |
| 11 |
|
simpl |
|- ( ( G e. V /\ X e. C ) -> G e. V ) |
| 12 |
8 9 10 11
|
qusbas |
|- ( ( G e. V /\ X e. C ) -> ( C /. .~ ) = ( Base ` H ) ) |
| 13 |
12 4
|
eqtr4di |
|- ( ( G e. V /\ X e. C ) -> ( C /. .~ ) = B ) |
| 14 |
7 13
|
eleqtrd |
|- ( ( G e. V /\ X e. C ) -> [ X ] .~ e. B ) |