Step |
Hyp |
Ref |
Expression |
1 |
|
quselbas.e |
|- .~ = ( G ~QG S ) |
2 |
|
quselbas.u |
|- U = ( G /s .~ ) |
3 |
|
quselbas.b |
|- B = ( Base ` G ) |
4 |
2
|
a1i |
|- ( ( G e. V /\ X e. W ) -> U = ( G /s .~ ) ) |
5 |
3
|
a1i |
|- ( ( G e. V /\ X e. W ) -> B = ( Base ` G ) ) |
6 |
1
|
ovexi |
|- .~ e. _V |
7 |
6
|
a1i |
|- ( ( G e. V /\ X e. W ) -> .~ e. _V ) |
8 |
|
simpl |
|- ( ( G e. V /\ X e. W ) -> G e. V ) |
9 |
4 5 7 8
|
qusbas |
|- ( ( G e. V /\ X e. W ) -> ( B /. .~ ) = ( Base ` U ) ) |
10 |
9
|
eqcomd |
|- ( ( G e. V /\ X e. W ) -> ( Base ` U ) = ( B /. .~ ) ) |
11 |
10
|
eleq2d |
|- ( ( G e. V /\ X e. W ) -> ( X e. ( Base ` U ) <-> X e. ( B /. .~ ) ) ) |
12 |
|
elqsg |
|- ( X e. W -> ( X e. ( B /. .~ ) <-> E. x e. B X = [ x ] .~ ) ) |
13 |
12
|
adantl |
|- ( ( G e. V /\ X e. W ) -> ( X e. ( B /. .~ ) <-> E. x e. B X = [ x ] .~ ) ) |
14 |
11 13
|
bitrd |
|- ( ( G e. V /\ X e. W ) -> ( X e. ( Base ` U ) <-> E. x e. B X = [ x ] .~ ) ) |