| Step | Hyp | Ref | Expression | 
						
							| 1 |  | quselbas.e |  |-  .~ = ( G ~QG S ) | 
						
							| 2 |  | quselbas.u |  |-  U = ( G /s .~ ) | 
						
							| 3 |  | quselbas.b |  |-  B = ( Base ` G ) | 
						
							| 4 | 2 | a1i |  |-  ( ( G e. V /\ X e. W ) -> U = ( G /s .~ ) ) | 
						
							| 5 | 3 | a1i |  |-  ( ( G e. V /\ X e. W ) -> B = ( Base ` G ) ) | 
						
							| 6 | 1 | ovexi |  |-  .~ e. _V | 
						
							| 7 | 6 | a1i |  |-  ( ( G e. V /\ X e. W ) -> .~ e. _V ) | 
						
							| 8 |  | simpl |  |-  ( ( G e. V /\ X e. W ) -> G e. V ) | 
						
							| 9 | 4 5 7 8 | qusbas |  |-  ( ( G e. V /\ X e. W ) -> ( B /. .~ ) = ( Base ` U ) ) | 
						
							| 10 | 9 | eqcomd |  |-  ( ( G e. V /\ X e. W ) -> ( Base ` U ) = ( B /. .~ ) ) | 
						
							| 11 | 10 | eleq2d |  |-  ( ( G e. V /\ X e. W ) -> ( X e. ( Base ` U ) <-> X e. ( B /. .~ ) ) ) | 
						
							| 12 |  | elqsg |  |-  ( X e. W -> ( X e. ( B /. .~ ) <-> E. x e. B X = [ x ] .~ ) ) | 
						
							| 13 | 12 | adantl |  |-  ( ( G e. V /\ X e. W ) -> ( X e. ( B /. .~ ) <-> E. x e. B X = [ x ] .~ ) ) | 
						
							| 14 | 11 13 | bitrd |  |-  ( ( G e. V /\ X e. W ) -> ( X e. ( Base ` U ) <-> E. x e. B X = [ x ] .~ ) ) |