| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qusgrp.h |
|- H = ( G /s ( G ~QG S ) ) |
| 2 |
1
|
a1i |
|- ( S e. ( NrmSGrp ` G ) -> H = ( G /s ( G ~QG S ) ) ) |
| 3 |
|
eqidd |
|- ( S e. ( NrmSGrp ` G ) -> ( Base ` G ) = ( Base ` G ) ) |
| 4 |
|
eqidd |
|- ( S e. ( NrmSGrp ` G ) -> ( +g ` G ) = ( +g ` G ) ) |
| 5 |
|
nsgsubg |
|- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
| 6 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 7 |
|
eqid |
|- ( G ~QG S ) = ( G ~QG S ) |
| 8 |
6 7
|
eqger |
|- ( S e. ( SubGrp ` G ) -> ( G ~QG S ) Er ( Base ` G ) ) |
| 9 |
5 8
|
syl |
|- ( S e. ( NrmSGrp ` G ) -> ( G ~QG S ) Er ( Base ` G ) ) |
| 10 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
| 11 |
5 10
|
syl |
|- ( S e. ( NrmSGrp ` G ) -> G e. Grp ) |
| 12 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 13 |
6 7 12
|
eqgcpbl |
|- ( S e. ( NrmSGrp ` G ) -> ( ( a ( G ~QG S ) c /\ b ( G ~QG S ) d ) -> ( a ( +g ` G ) b ) ( G ~QG S ) ( c ( +g ` G ) d ) ) ) |
| 14 |
6 12
|
grpcl |
|- ( ( G e. Grp /\ u e. ( Base ` G ) /\ v e. ( Base ` G ) ) -> ( u ( +g ` G ) v ) e. ( Base ` G ) ) |
| 15 |
11 14
|
syl3an1 |
|- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) /\ v e. ( Base ` G ) ) -> ( u ( +g ` G ) v ) e. ( Base ` G ) ) |
| 16 |
9
|
adantr |
|- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( G ~QG S ) Er ( Base ` G ) ) |
| 17 |
11
|
adantr |
|- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> G e. Grp ) |
| 18 |
|
simpr1 |
|- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> u e. ( Base ` G ) ) |
| 19 |
|
simpr2 |
|- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> v e. ( Base ` G ) ) |
| 20 |
17 18 19 14
|
syl3anc |
|- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( u ( +g ` G ) v ) e. ( Base ` G ) ) |
| 21 |
|
simpr3 |
|- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> w e. ( Base ` G ) ) |
| 22 |
6 12
|
grpcl |
|- ( ( G e. Grp /\ ( u ( +g ` G ) v ) e. ( Base ` G ) /\ w e. ( Base ` G ) ) -> ( ( u ( +g ` G ) v ) ( +g ` G ) w ) e. ( Base ` G ) ) |
| 23 |
17 20 21 22
|
syl3anc |
|- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( ( u ( +g ` G ) v ) ( +g ` G ) w ) e. ( Base ` G ) ) |
| 24 |
16 23
|
erref |
|- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( ( u ( +g ` G ) v ) ( +g ` G ) w ) ( G ~QG S ) ( ( u ( +g ` G ) v ) ( +g ` G ) w ) ) |
| 25 |
6 12
|
grpass |
|- ( ( G e. Grp /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( ( u ( +g ` G ) v ) ( +g ` G ) w ) = ( u ( +g ` G ) ( v ( +g ` G ) w ) ) ) |
| 26 |
11 25
|
sylan |
|- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( ( u ( +g ` G ) v ) ( +g ` G ) w ) = ( u ( +g ` G ) ( v ( +g ` G ) w ) ) ) |
| 27 |
24 26
|
breqtrd |
|- ( ( S e. ( NrmSGrp ` G ) /\ ( u e. ( Base ` G ) /\ v e. ( Base ` G ) /\ w e. ( Base ` G ) ) ) -> ( ( u ( +g ` G ) v ) ( +g ` G ) w ) ( G ~QG S ) ( u ( +g ` G ) ( v ( +g ` G ) w ) ) ) |
| 28 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
| 29 |
6 28
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 30 |
11 29
|
syl |
|- ( S e. ( NrmSGrp ` G ) -> ( 0g ` G ) e. ( Base ` G ) ) |
| 31 |
6 12 28
|
grplid |
|- ( ( G e. Grp /\ u e. ( Base ` G ) ) -> ( ( 0g ` G ) ( +g ` G ) u ) = u ) |
| 32 |
11 31
|
sylan |
|- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( ( 0g ` G ) ( +g ` G ) u ) = u ) |
| 33 |
9
|
adantr |
|- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( G ~QG S ) Er ( Base ` G ) ) |
| 34 |
|
simpr |
|- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> u e. ( Base ` G ) ) |
| 35 |
33 34
|
erref |
|- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> u ( G ~QG S ) u ) |
| 36 |
32 35
|
eqbrtrd |
|- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( ( 0g ` G ) ( +g ` G ) u ) ( G ~QG S ) u ) |
| 37 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 38 |
6 37
|
grpinvcl |
|- ( ( G e. Grp /\ u e. ( Base ` G ) ) -> ( ( invg ` G ) ` u ) e. ( Base ` G ) ) |
| 39 |
11 38
|
sylan |
|- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( ( invg ` G ) ` u ) e. ( Base ` G ) ) |
| 40 |
6 12 28 37
|
grplinv |
|- ( ( G e. Grp /\ u e. ( Base ` G ) ) -> ( ( ( invg ` G ) ` u ) ( +g ` G ) u ) = ( 0g ` G ) ) |
| 41 |
11 40
|
sylan |
|- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( ( ( invg ` G ) ` u ) ( +g ` G ) u ) = ( 0g ` G ) ) |
| 42 |
30
|
adantr |
|- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( 0g ` G ) e. ( Base ` G ) ) |
| 43 |
33 42
|
erref |
|- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( 0g ` G ) ( G ~QG S ) ( 0g ` G ) ) |
| 44 |
41 43
|
eqbrtrd |
|- ( ( S e. ( NrmSGrp ` G ) /\ u e. ( Base ` G ) ) -> ( ( ( invg ` G ) ` u ) ( +g ` G ) u ) ( G ~QG S ) ( 0g ` G ) ) |
| 45 |
2 3 4 9 11 13 15 27 30 36 39 44
|
qusgrp2 |
|- ( S e. ( NrmSGrp ` G ) -> ( H e. Grp /\ [ ( 0g ` G ) ] ( G ~QG S ) = ( 0g ` H ) ) ) |
| 46 |
45
|
simpld |
|- ( S e. ( NrmSGrp ` G ) -> H e. Grp ) |