Step |
Hyp |
Ref |
Expression |
1 |
|
qusgrp2.u |
|- ( ph -> U = ( R /s .~ ) ) |
2 |
|
qusgrp2.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
qusgrp2.p |
|- ( ph -> .+ = ( +g ` R ) ) |
4 |
|
qusgrp2.r |
|- ( ph -> .~ Er V ) |
5 |
|
qusgrp2.x |
|- ( ph -> R e. X ) |
6 |
|
qusgrp2.e |
|- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .+ b ) .~ ( p .+ q ) ) ) |
7 |
|
qusgrp2.1 |
|- ( ( ph /\ x e. V /\ y e. V ) -> ( x .+ y ) e. V ) |
8 |
|
qusgrp2.2 |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( x .+ y ) .+ z ) .~ ( x .+ ( y .+ z ) ) ) |
9 |
|
qusgrp2.3 |
|- ( ph -> .0. e. V ) |
10 |
|
qusgrp2.4 |
|- ( ( ph /\ x e. V ) -> ( .0. .+ x ) .~ x ) |
11 |
|
qusgrp2.5 |
|- ( ( ph /\ x e. V ) -> N e. V ) |
12 |
|
qusgrp2.6 |
|- ( ( ph /\ x e. V ) -> ( N .+ x ) .~ .0. ) |
13 |
|
eqid |
|- ( u e. V |-> [ u ] .~ ) = ( u e. V |-> [ u ] .~ ) |
14 |
|
fvex |
|- ( Base ` R ) e. _V |
15 |
2 14
|
eqeltrdi |
|- ( ph -> V e. _V ) |
16 |
|
erex |
|- ( .~ Er V -> ( V e. _V -> .~ e. _V ) ) |
17 |
4 15 16
|
sylc |
|- ( ph -> .~ e. _V ) |
18 |
1 2 13 17 5
|
qusval |
|- ( ph -> U = ( ( u e. V |-> [ u ] .~ ) "s R ) ) |
19 |
1 2 13 17 5
|
quslem |
|- ( ph -> ( u e. V |-> [ u ] .~ ) : V -onto-> ( V /. .~ ) ) |
20 |
7
|
3expb |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. V ) |
21 |
4 15 13 20 6
|
ercpbl |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( ( u e. V |-> [ u ] .~ ) ` a ) = ( ( u e. V |-> [ u ] .~ ) ` p ) /\ ( ( u e. V |-> [ u ] .~ ) ` b ) = ( ( u e. V |-> [ u ] .~ ) ` q ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( a .+ b ) ) = ( ( u e. V |-> [ u ] .~ ) ` ( p .+ q ) ) ) ) |
22 |
4
|
adantr |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> .~ Er V ) |
23 |
22 8
|
erthi |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> [ ( ( x .+ y ) .+ z ) ] .~ = [ ( x .+ ( y .+ z ) ) ] .~ ) |
24 |
15
|
adantr |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> V e. _V ) |
25 |
22 24 13
|
divsfval |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( ( x .+ y ) .+ z ) ) = [ ( ( x .+ y ) .+ z ) ] .~ ) |
26 |
22 24 13
|
divsfval |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( x .+ ( y .+ z ) ) ) = [ ( x .+ ( y .+ z ) ) ] .~ ) |
27 |
23 25 26
|
3eqtr4d |
|- ( ( ph /\ ( x e. V /\ y e. V /\ z e. V ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( ( x .+ y ) .+ z ) ) = ( ( u e. V |-> [ u ] .~ ) ` ( x .+ ( y .+ z ) ) ) ) |
28 |
4
|
adantr |
|- ( ( ph /\ x e. V ) -> .~ Er V ) |
29 |
28 10
|
erthi |
|- ( ( ph /\ x e. V ) -> [ ( .0. .+ x ) ] .~ = [ x ] .~ ) |
30 |
15
|
adantr |
|- ( ( ph /\ x e. V ) -> V e. _V ) |
31 |
28 30 13
|
divsfval |
|- ( ( ph /\ x e. V ) -> ( ( u e. V |-> [ u ] .~ ) ` ( .0. .+ x ) ) = [ ( .0. .+ x ) ] .~ ) |
32 |
28 30 13
|
divsfval |
|- ( ( ph /\ x e. V ) -> ( ( u e. V |-> [ u ] .~ ) ` x ) = [ x ] .~ ) |
33 |
29 31 32
|
3eqtr4d |
|- ( ( ph /\ x e. V ) -> ( ( u e. V |-> [ u ] .~ ) ` ( .0. .+ x ) ) = ( ( u e. V |-> [ u ] .~ ) ` x ) ) |
34 |
28 12
|
ersym |
|- ( ( ph /\ x e. V ) -> .0. .~ ( N .+ x ) ) |
35 |
28 34
|
erthi |
|- ( ( ph /\ x e. V ) -> [ .0. ] .~ = [ ( N .+ x ) ] .~ ) |
36 |
28 30 13
|
divsfval |
|- ( ( ph /\ x e. V ) -> ( ( u e. V |-> [ u ] .~ ) ` .0. ) = [ .0. ] .~ ) |
37 |
28 30 13
|
divsfval |
|- ( ( ph /\ x e. V ) -> ( ( u e. V |-> [ u ] .~ ) ` ( N .+ x ) ) = [ ( N .+ x ) ] .~ ) |
38 |
35 36 37
|
3eqtr4rd |
|- ( ( ph /\ x e. V ) -> ( ( u e. V |-> [ u ] .~ ) ` ( N .+ x ) ) = ( ( u e. V |-> [ u ] .~ ) ` .0. ) ) |
39 |
18 2 3 19 21 5 7 27 9 33 11 38
|
imasgrp2 |
|- ( ph -> ( U e. Grp /\ ( ( u e. V |-> [ u ] .~ ) ` .0. ) = ( 0g ` U ) ) ) |
40 |
4 15 13
|
divsfval |
|- ( ph -> ( ( u e. V |-> [ u ] .~ ) ` .0. ) = [ .0. ] .~ ) |
41 |
40
|
eqcomd |
|- ( ph -> [ .0. ] .~ = ( ( u e. V |-> [ u ] .~ ) ` .0. ) ) |
42 |
41
|
eqeq1d |
|- ( ph -> ( [ .0. ] .~ = ( 0g ` U ) <-> ( ( u e. V |-> [ u ] .~ ) ` .0. ) = ( 0g ` U ) ) ) |
43 |
42
|
anbi2d |
|- ( ph -> ( ( U e. Grp /\ [ .0. ] .~ = ( 0g ` U ) ) <-> ( U e. Grp /\ ( ( u e. V |-> [ u ] .~ ) ` .0. ) = ( 0g ` U ) ) ) ) |
44 |
39 43
|
mpbird |
|- ( ph -> ( U e. Grp /\ [ .0. ] .~ = ( 0g ` U ) ) ) |