| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							qusin.u | 
							 |-  ( ph -> U = ( R /s .~ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							qusin.v | 
							 |-  ( ph -> V = ( Base ` R ) )  | 
						
						
							| 3 | 
							
								
							 | 
							qusin.e | 
							 |-  ( ph -> .~ e. W )  | 
						
						
							| 4 | 
							
								
							 | 
							qusin.r | 
							 |-  ( ph -> R e. Z )  | 
						
						
							| 5 | 
							
								
							 | 
							qusin.s | 
							 |-  ( ph -> ( .~ " V ) C_ V )  | 
						
						
							| 6 | 
							
								
							 | 
							ecinxp | 
							 |-  ( ( ( .~ " V ) C_ V /\ x e. V ) -> [ x ] .~ = [ x ] ( .~ i^i ( V X. V ) ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylan | 
							 |-  ( ( ph /\ x e. V ) -> [ x ] .~ = [ x ] ( .~ i^i ( V X. V ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							mpteq2dva | 
							 |-  ( ph -> ( x e. V |-> [ x ] .~ ) = ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( x e. V |-> [ x ] .~ ) "s R ) = ( ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) "s R ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. V |-> [ x ] .~ ) = ( x e. V |-> [ x ] .~ )  | 
						
						
							| 11 | 
							
								1 2 10 3 4
							 | 
							qusval | 
							 |-  ( ph -> U = ( ( x e. V |-> [ x ] .~ ) "s R ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqidd | 
							 |-  ( ph -> ( R /s ( .~ i^i ( V X. V ) ) ) = ( R /s ( .~ i^i ( V X. V ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) = ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							inex1g | 
							 |-  ( .~ e. W -> ( .~ i^i ( V X. V ) ) e. _V )  | 
						
						
							| 15 | 
							
								3 14
							 | 
							syl | 
							 |-  ( ph -> ( .~ i^i ( V X. V ) ) e. _V )  | 
						
						
							| 16 | 
							
								12 2 13 15 4
							 | 
							qusval | 
							 |-  ( ph -> ( R /s ( .~ i^i ( V X. V ) ) ) = ( ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) "s R ) )  | 
						
						
							| 17 | 
							
								9 11 16
							 | 
							3eqtr4d | 
							 |-  ( ph -> U = ( R /s ( .~ i^i ( V X. V ) ) ) )  |