Step |
Hyp |
Ref |
Expression |
1 |
|
qusin.u |
|- ( ph -> U = ( R /s .~ ) ) |
2 |
|
qusin.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
qusin.e |
|- ( ph -> .~ e. W ) |
4 |
|
qusin.r |
|- ( ph -> R e. Z ) |
5 |
|
qusin.s |
|- ( ph -> ( .~ " V ) C_ V ) |
6 |
|
ecinxp |
|- ( ( ( .~ " V ) C_ V /\ x e. V ) -> [ x ] .~ = [ x ] ( .~ i^i ( V X. V ) ) ) |
7 |
5 6
|
sylan |
|- ( ( ph /\ x e. V ) -> [ x ] .~ = [ x ] ( .~ i^i ( V X. V ) ) ) |
8 |
7
|
mpteq2dva |
|- ( ph -> ( x e. V |-> [ x ] .~ ) = ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) ) |
9 |
8
|
oveq1d |
|- ( ph -> ( ( x e. V |-> [ x ] .~ ) "s R ) = ( ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) "s R ) ) |
10 |
|
eqid |
|- ( x e. V |-> [ x ] .~ ) = ( x e. V |-> [ x ] .~ ) |
11 |
1 2 10 3 4
|
qusval |
|- ( ph -> U = ( ( x e. V |-> [ x ] .~ ) "s R ) ) |
12 |
|
eqidd |
|- ( ph -> ( R /s ( .~ i^i ( V X. V ) ) ) = ( R /s ( .~ i^i ( V X. V ) ) ) ) |
13 |
|
eqid |
|- ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) = ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) |
14 |
|
inex1g |
|- ( .~ e. W -> ( .~ i^i ( V X. V ) ) e. _V ) |
15 |
3 14
|
syl |
|- ( ph -> ( .~ i^i ( V X. V ) ) e. _V ) |
16 |
12 2 13 15 4
|
qusval |
|- ( ph -> ( R /s ( .~ i^i ( V X. V ) ) ) = ( ( x e. V |-> [ x ] ( .~ i^i ( V X. V ) ) ) "s R ) ) |
17 |
9 11 16
|
3eqtr4d |
|- ( ph -> U = ( R /s ( .~ i^i ( V X. V ) ) ) ) |