Metamath Proof Explorer


Theorem qusinv

Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses qusgrp.h
|- H = ( G /s ( G ~QG S ) )
qusinv.v
|- V = ( Base ` G )
qusinv.i
|- I = ( invg ` G )
qusinv.n
|- N = ( invg ` H )
Assertion qusinv
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( N ` [ X ] ( G ~QG S ) ) = [ ( I ` X ) ] ( G ~QG S ) )

Proof

Step Hyp Ref Expression
1 qusgrp.h
 |-  H = ( G /s ( G ~QG S ) )
2 qusinv.v
 |-  V = ( Base ` G )
3 qusinv.i
 |-  I = ( invg ` G )
4 qusinv.n
 |-  N = ( invg ` H )
5 nsgsubg
 |-  ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) )
6 subgrcl
 |-  ( S e. ( SubGrp ` G ) -> G e. Grp )
7 5 6 syl
 |-  ( S e. ( NrmSGrp ` G ) -> G e. Grp )
8 2 3 grpinvcl
 |-  ( ( G e. Grp /\ X e. V ) -> ( I ` X ) e. V )
9 7 8 sylan
 |-  ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( I ` X ) e. V )
10 eqid
 |-  ( +g ` G ) = ( +g ` G )
11 eqid
 |-  ( +g ` H ) = ( +g ` H )
12 1 2 10 11 qusadd
 |-  ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ ( I ` X ) e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = [ ( X ( +g ` G ) ( I ` X ) ) ] ( G ~QG S ) )
13 9 12 mpd3an3
 |-  ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = [ ( X ( +g ` G ) ( I ` X ) ) ] ( G ~QG S ) )
14 eqid
 |-  ( 0g ` G ) = ( 0g ` G )
15 2 10 14 3 grprinv
 |-  ( ( G e. Grp /\ X e. V ) -> ( X ( +g ` G ) ( I ` X ) ) = ( 0g ` G ) )
16 7 15 sylan
 |-  ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( X ( +g ` G ) ( I ` X ) ) = ( 0g ` G ) )
17 16 eceq1d
 |-  ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ ( X ( +g ` G ) ( I ` X ) ) ] ( G ~QG S ) = [ ( 0g ` G ) ] ( G ~QG S ) )
18 1 14 qus0
 |-  ( S e. ( NrmSGrp ` G ) -> [ ( 0g ` G ) ] ( G ~QG S ) = ( 0g ` H ) )
19 18 adantr
 |-  ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ ( 0g ` G ) ] ( G ~QG S ) = ( 0g ` H ) )
20 13 17 19 3eqtrd
 |-  ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = ( 0g ` H ) )
21 1 qusgrp
 |-  ( S e. ( NrmSGrp ` G ) -> H e. Grp )
22 21 adantr
 |-  ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> H e. Grp )
23 eqid
 |-  ( Base ` H ) = ( Base ` H )
24 1 2 23 quseccl
 |-  ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ X ] ( G ~QG S ) e. ( Base ` H ) )
25 1 2 23 quseccl
 |-  ( ( S e. ( NrmSGrp ` G ) /\ ( I ` X ) e. V ) -> [ ( I ` X ) ] ( G ~QG S ) e. ( Base ` H ) )
26 9 25 syldan
 |-  ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ ( I ` X ) ] ( G ~QG S ) e. ( Base ` H ) )
27 eqid
 |-  ( 0g ` H ) = ( 0g ` H )
28 23 11 27 4 grpinvid1
 |-  ( ( H e. Grp /\ [ X ] ( G ~QG S ) e. ( Base ` H ) /\ [ ( I ` X ) ] ( G ~QG S ) e. ( Base ` H ) ) -> ( ( N ` [ X ] ( G ~QG S ) ) = [ ( I ` X ) ] ( G ~QG S ) <-> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = ( 0g ` H ) ) )
29 22 24 26 28 syl3anc
 |-  ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( ( N ` [ X ] ( G ~QG S ) ) = [ ( I ` X ) ] ( G ~QG S ) <-> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = ( 0g ` H ) ) )
30 20 29 mpbird
 |-  ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( N ` [ X ] ( G ~QG S ) ) = [ ( I ` X ) ] ( G ~QG S ) )