Step |
Hyp |
Ref |
Expression |
1 |
|
qusgrp.h |
|- H = ( G /s ( G ~QG S ) ) |
2 |
|
qusinv.v |
|- V = ( Base ` G ) |
3 |
|
qusinv.i |
|- I = ( invg ` G ) |
4 |
|
qusinv.n |
|- N = ( invg ` H ) |
5 |
|
nsgsubg |
|- ( S e. ( NrmSGrp ` G ) -> S e. ( SubGrp ` G ) ) |
6 |
|
subgrcl |
|- ( S e. ( SubGrp ` G ) -> G e. Grp ) |
7 |
5 6
|
syl |
|- ( S e. ( NrmSGrp ` G ) -> G e. Grp ) |
8 |
2 3
|
grpinvcl |
|- ( ( G e. Grp /\ X e. V ) -> ( I ` X ) e. V ) |
9 |
7 8
|
sylan |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( I ` X ) e. V ) |
10 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
11 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
12 |
1 2 10 11
|
qusadd |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V /\ ( I ` X ) e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = [ ( X ( +g ` G ) ( I ` X ) ) ] ( G ~QG S ) ) |
13 |
9 12
|
mpd3an3 |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = [ ( X ( +g ` G ) ( I ` X ) ) ] ( G ~QG S ) ) |
14 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
15 |
2 10 14 3
|
grprinv |
|- ( ( G e. Grp /\ X e. V ) -> ( X ( +g ` G ) ( I ` X ) ) = ( 0g ` G ) ) |
16 |
7 15
|
sylan |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( X ( +g ` G ) ( I ` X ) ) = ( 0g ` G ) ) |
17 |
16
|
eceq1d |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ ( X ( +g ` G ) ( I ` X ) ) ] ( G ~QG S ) = [ ( 0g ` G ) ] ( G ~QG S ) ) |
18 |
1 14
|
qus0 |
|- ( S e. ( NrmSGrp ` G ) -> [ ( 0g ` G ) ] ( G ~QG S ) = ( 0g ` H ) ) |
19 |
18
|
adantr |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ ( 0g ` G ) ] ( G ~QG S ) = ( 0g ` H ) ) |
20 |
13 17 19
|
3eqtrd |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = ( 0g ` H ) ) |
21 |
1
|
qusgrp |
|- ( S e. ( NrmSGrp ` G ) -> H e. Grp ) |
22 |
21
|
adantr |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> H e. Grp ) |
23 |
|
eqid |
|- ( Base ` H ) = ( Base ` H ) |
24 |
1 2 23
|
quseccl |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ X ] ( G ~QG S ) e. ( Base ` H ) ) |
25 |
1 2 23
|
quseccl |
|- ( ( S e. ( NrmSGrp ` G ) /\ ( I ` X ) e. V ) -> [ ( I ` X ) ] ( G ~QG S ) e. ( Base ` H ) ) |
26 |
9 25
|
syldan |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> [ ( I ` X ) ] ( G ~QG S ) e. ( Base ` H ) ) |
27 |
|
eqid |
|- ( 0g ` H ) = ( 0g ` H ) |
28 |
23 11 27 4
|
grpinvid1 |
|- ( ( H e. Grp /\ [ X ] ( G ~QG S ) e. ( Base ` H ) /\ [ ( I ` X ) ] ( G ~QG S ) e. ( Base ` H ) ) -> ( ( N ` [ X ] ( G ~QG S ) ) = [ ( I ` X ) ] ( G ~QG S ) <-> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = ( 0g ` H ) ) ) |
29 |
22 24 26 28
|
syl3anc |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( ( N ` [ X ] ( G ~QG S ) ) = [ ( I ` X ) ] ( G ~QG S ) <-> ( [ X ] ( G ~QG S ) ( +g ` H ) [ ( I ` X ) ] ( G ~QG S ) ) = ( 0g ` H ) ) ) |
30 |
20 29
|
mpbird |
|- ( ( S e. ( NrmSGrp ` G ) /\ X e. V ) -> ( N ` [ X ] ( G ~QG S ) ) = [ ( I ` X ) ] ( G ~QG S ) ) |