Step |
Hyp |
Ref |
Expression |
1 |
|
qusval.u |
|- ( ph -> U = ( R /s .~ ) ) |
2 |
|
qusval.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
qusval.f |
|- F = ( x e. V |-> [ x ] .~ ) |
4 |
|
qusval.e |
|- ( ph -> .~ e. W ) |
5 |
|
qusval.r |
|- ( ph -> R e. Z ) |
6 |
|
ecexg |
|- ( .~ e. W -> [ x ] .~ e. _V ) |
7 |
4 6
|
syl |
|- ( ph -> [ x ] .~ e. _V ) |
8 |
7
|
ralrimivw |
|- ( ph -> A. x e. V [ x ] .~ e. _V ) |
9 |
3
|
fnmpt |
|- ( A. x e. V [ x ] .~ e. _V -> F Fn V ) |
10 |
8 9
|
syl |
|- ( ph -> F Fn V ) |
11 |
|
dffn4 |
|- ( F Fn V <-> F : V -onto-> ran F ) |
12 |
10 11
|
sylib |
|- ( ph -> F : V -onto-> ran F ) |
13 |
3
|
rnmpt |
|- ran F = { y | E. x e. V y = [ x ] .~ } |
14 |
|
df-qs |
|- ( V /. .~ ) = { y | E. x e. V y = [ x ] .~ } |
15 |
13 14
|
eqtr4i |
|- ran F = ( V /. .~ ) |
16 |
|
foeq3 |
|- ( ran F = ( V /. .~ ) -> ( F : V -onto-> ran F <-> F : V -onto-> ( V /. .~ ) ) ) |
17 |
15 16
|
ax-mp |
|- ( F : V -onto-> ran F <-> F : V -onto-> ( V /. .~ ) ) |
18 |
12 17
|
sylib |
|- ( ph -> F : V -onto-> ( V /. .~ ) ) |