| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							qusval.u | 
							 |-  ( ph -> U = ( R /s .~ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							qusval.v | 
							 |-  ( ph -> V = ( Base ` R ) )  | 
						
						
							| 3 | 
							
								
							 | 
							qusval.f | 
							 |-  F = ( x e. V |-> [ x ] .~ )  | 
						
						
							| 4 | 
							
								
							 | 
							qusval.e | 
							 |-  ( ph -> .~ e. W )  | 
						
						
							| 5 | 
							
								
							 | 
							qusval.r | 
							 |-  ( ph -> R e. Z )  | 
						
						
							| 6 | 
							
								
							 | 
							ecexg | 
							 |-  ( .~ e. W -> [ x ] .~ e. _V )  | 
						
						
							| 7 | 
							
								4 6
							 | 
							syl | 
							 |-  ( ph -> [ x ] .~ e. _V )  | 
						
						
							| 8 | 
							
								7
							 | 
							ralrimivw | 
							 |-  ( ph -> A. x e. V [ x ] .~ e. _V )  | 
						
						
							| 9 | 
							
								3
							 | 
							fnmpt | 
							 |-  ( A. x e. V [ x ] .~ e. _V -> F Fn V )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							syl | 
							 |-  ( ph -> F Fn V )  | 
						
						
							| 11 | 
							
								
							 | 
							dffn4 | 
							 |-  ( F Fn V <-> F : V -onto-> ran F )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sylib | 
							 |-  ( ph -> F : V -onto-> ran F )  | 
						
						
							| 13 | 
							
								3
							 | 
							rnmpt | 
							 |-  ran F = { y | E. x e. V y = [ x ] .~ } | 
						
						
							| 14 | 
							
								
							 | 
							df-qs | 
							 |-  ( V /. .~ ) = { y | E. x e. V y = [ x ] .~ } | 
						
						
							| 15 | 
							
								13 14
							 | 
							eqtr4i | 
							 |-  ran F = ( V /. .~ )  | 
						
						
							| 16 | 
							
								
							 | 
							foeq3 | 
							 |-  ( ran F = ( V /. .~ ) -> ( F : V -onto-> ran F <-> F : V -onto-> ( V /. .~ ) ) )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							ax-mp | 
							 |-  ( F : V -onto-> ran F <-> F : V -onto-> ( V /. .~ ) )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							sylib | 
							 |-  ( ph -> F : V -onto-> ( V /. .~ ) )  |