| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							qusmul2idl.h | 
							 |-  Q = ( R /s ( R ~QG I ) )  | 
						
						
							| 2 | 
							
								
							 | 
							qusmul2idl.v | 
							 |-  B = ( Base ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							qusmul2idl.p | 
							 |-  .x. = ( .r ` R )  | 
						
						
							| 4 | 
							
								
							 | 
							qusmul2idl.a | 
							 |-  .X. = ( .r ` Q )  | 
						
						
							| 5 | 
							
								
							 | 
							qusmul2idl.1 | 
							 |-  ( ph -> R e. Ring )  | 
						
						
							| 6 | 
							
								
							 | 
							qusmul2idl.2 | 
							 |-  ( ph -> I e. ( 2Ideal ` R ) )  | 
						
						
							| 7 | 
							
								
							 | 
							qusmul2idl.3 | 
							 |-  ( ph -> X e. B )  | 
						
						
							| 8 | 
							
								
							 | 
							qusmul2idl.4 | 
							 |-  ( ph -> Y e. B )  | 
						
						
							| 9 | 
							
								1
							 | 
							a1i | 
							 |-  ( ph -> Q = ( R /s ( R ~QG I ) ) )  | 
						
						
							| 10 | 
							
								2
							 | 
							a1i | 
							 |-  ( ph -> B = ( Base ` R ) )  | 
						
						
							| 11 | 
							
								6
							 | 
							2idllidld | 
							 |-  ( ph -> I e. ( LIdeal ` R ) )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( LIdeal ` R ) = ( LIdeal ` R )  | 
						
						
							| 13 | 
							
								12
							 | 
							lidlsubg | 
							 |-  ( ( R e. Ring /\ I e. ( LIdeal ` R ) ) -> I e. ( SubGrp ` R ) )  | 
						
						
							| 14 | 
							
								5 11 13
							 | 
							syl2anc | 
							 |-  ( ph -> I e. ( SubGrp ` R ) )  | 
						
						
							| 15 | 
							
								
							 | 
							eqid | 
							 |-  ( R ~QG I ) = ( R ~QG I )  | 
						
						
							| 16 | 
							
								2 15
							 | 
							eqger | 
							 |-  ( I e. ( SubGrp ` R ) -> ( R ~QG I ) Er B )  | 
						
						
							| 17 | 
							
								14 16
							 | 
							syl | 
							 |-  ( ph -> ( R ~QG I ) Er B )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							 |-  ( 2Ideal ` R ) = ( 2Ideal ` R )  | 
						
						
							| 19 | 
							
								2 15 18 3
							 | 
							2idlcpbl | 
							 |-  ( ( R e. Ring /\ I e. ( 2Ideal ` R ) ) -> ( ( x ( R ~QG I ) y /\ z ( R ~QG I ) t ) -> ( x .x. z ) ( R ~QG I ) ( y .x. t ) ) )  | 
						
						
							| 20 | 
							
								5 6 19
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( x ( R ~QG I ) y /\ z ( R ~QG I ) t ) -> ( x .x. z ) ( R ~QG I ) ( y .x. t ) ) )  | 
						
						
							| 21 | 
							
								2 3
							 | 
							ringcl | 
							 |-  ( ( R e. Ring /\ p e. B /\ q e. B ) -> ( p .x. q ) e. B )  | 
						
						
							| 22 | 
							
								21
							 | 
							3expb | 
							 |-  ( ( R e. Ring /\ ( p e. B /\ q e. B ) ) -> ( p .x. q ) e. B )  | 
						
						
							| 23 | 
							
								5 22
							 | 
							sylan | 
							 |-  ( ( ph /\ ( p e. B /\ q e. B ) ) -> ( p .x. q ) e. B )  | 
						
						
							| 24 | 
							
								23
							 | 
							caovclg | 
							 |-  ( ( ph /\ ( y e. B /\ t e. B ) ) -> ( y .x. t ) e. B )  | 
						
						
							| 25 | 
							
								9 10 17 5 20 24 3 4
							 | 
							qusmulval | 
							 |-  ( ( ph /\ X e. B /\ Y e. B ) -> ( [ X ] ( R ~QG I ) .X. [ Y ] ( R ~QG I ) ) = [ ( X .x. Y ) ] ( R ~QG I ) )  | 
						
						
							| 26 | 
							
								7 8 25
							 | 
							mpd3an23 | 
							 |-  ( ph -> ( [ X ] ( R ~QG I ) .X. [ Y ] ( R ~QG I ) ) = [ ( X .x. Y ) ] ( R ~QG I ) )  |