Description: Value of the ring operation in a quotient ring of a commutative ring. (Contributed by Thierry Arnoux, 1-Sep-2024) (Proof shortened by metakunt, 3-Jun-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qusmulcrng.h | |- Q = ( R /s ( R ~QG I ) ) |
|
qusmulcrng.v | |- B = ( Base ` R ) |
||
qusmulcrng.p | |- .x. = ( .r ` R ) |
||
qusmulcrng.a | |- .X. = ( .r ` Q ) |
||
qusmulcrng.r | |- ( ph -> R e. CRing ) |
||
qusmulcrng.i | |- ( ph -> I e. ( LIdeal ` R ) ) |
||
qusmulcrng.x | |- ( ph -> X e. B ) |
||
qusmulcrng.y | |- ( ph -> Y e. B ) |
||
Assertion | qusmulcrng | |- ( ph -> ( [ X ] ( R ~QG I ) .X. [ Y ] ( R ~QG I ) ) = [ ( X .x. Y ) ] ( R ~QG I ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qusmulcrng.h | |- Q = ( R /s ( R ~QG I ) ) |
|
2 | qusmulcrng.v | |- B = ( Base ` R ) |
|
3 | qusmulcrng.p | |- .x. = ( .r ` R ) |
|
4 | qusmulcrng.a | |- .X. = ( .r ` Q ) |
|
5 | qusmulcrng.r | |- ( ph -> R e. CRing ) |
|
6 | qusmulcrng.i | |- ( ph -> I e. ( LIdeal ` R ) ) |
|
7 | qusmulcrng.x | |- ( ph -> X e. B ) |
|
8 | qusmulcrng.y | |- ( ph -> Y e. B ) |
|
9 | 5 | crngringd | |- ( ph -> R e. Ring ) |
10 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R ) |
|
11 | 10 | crng2idl | |- ( R e. CRing -> ( LIdeal ` R ) = ( 2Ideal ` R ) ) |
12 | 5 11 | syl | |- ( ph -> ( LIdeal ` R ) = ( 2Ideal ` R ) ) |
13 | 6 12 | eleqtrd | |- ( ph -> I e. ( 2Ideal ` R ) ) |
14 | 1 2 3 4 9 13 7 8 | qusmul2idl | |- ( ph -> ( [ X ] ( R ~QG I ) .X. [ Y ] ( R ~QG I ) ) = [ ( X .x. Y ) ] ( R ~QG I ) ) |