Metamath Proof Explorer


Theorem qusmulcrng

Description: Value of the ring operation in a quotient ring of a commutative ring. (Contributed by Thierry Arnoux, 1-Sep-2024) (Proof shortened by metakunt, 3-Jun-2025)

Ref Expression
Hypotheses qusmulcrng.h
|- Q = ( R /s ( R ~QG I ) )
qusmulcrng.v
|- B = ( Base ` R )
qusmulcrng.p
|- .x. = ( .r ` R )
qusmulcrng.a
|- .X. = ( .r ` Q )
qusmulcrng.r
|- ( ph -> R e. CRing )
qusmulcrng.i
|- ( ph -> I e. ( LIdeal ` R ) )
qusmulcrng.x
|- ( ph -> X e. B )
qusmulcrng.y
|- ( ph -> Y e. B )
Assertion qusmulcrng
|- ( ph -> ( [ X ] ( R ~QG I ) .X. [ Y ] ( R ~QG I ) ) = [ ( X .x. Y ) ] ( R ~QG I ) )

Proof

Step Hyp Ref Expression
1 qusmulcrng.h
 |-  Q = ( R /s ( R ~QG I ) )
2 qusmulcrng.v
 |-  B = ( Base ` R )
3 qusmulcrng.p
 |-  .x. = ( .r ` R )
4 qusmulcrng.a
 |-  .X. = ( .r ` Q )
5 qusmulcrng.r
 |-  ( ph -> R e. CRing )
6 qusmulcrng.i
 |-  ( ph -> I e. ( LIdeal ` R ) )
7 qusmulcrng.x
 |-  ( ph -> X e. B )
8 qusmulcrng.y
 |-  ( ph -> Y e. B )
9 5 crngringd
 |-  ( ph -> R e. Ring )
10 eqid
 |-  ( LIdeal ` R ) = ( LIdeal ` R )
11 10 crng2idl
 |-  ( R e. CRing -> ( LIdeal ` R ) = ( 2Ideal ` R ) )
12 5 11 syl
 |-  ( ph -> ( LIdeal ` R ) = ( 2Ideal ` R ) )
13 6 12 eleqtrd
 |-  ( ph -> I e. ( 2Ideal ` R ) )
14 1 2 3 4 9 13 7 8 qusmul2idl
 |-  ( ph -> ( [ X ] ( R ~QG I ) .X. [ Y ] ( R ~QG I ) ) = [ ( X .x. Y ) ] ( R ~QG I ) )