Description: Value of the ring operation in a quotient ring of a commutative ring. (Contributed by Thierry Arnoux, 1-Sep-2024) (Proof shortened by metakunt, 3-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusmulcrng.h | |- Q = ( R /s ( R ~QG I ) )  | 
					|
| qusmulcrng.v | |- B = ( Base ` R )  | 
					||
| qusmulcrng.p | |- .x. = ( .r ` R )  | 
					||
| qusmulcrng.a | |- .X. = ( .r ` Q )  | 
					||
| qusmulcrng.r | |- ( ph -> R e. CRing )  | 
					||
| qusmulcrng.i | |- ( ph -> I e. ( LIdeal ` R ) )  | 
					||
| qusmulcrng.x | |- ( ph -> X e. B )  | 
					||
| qusmulcrng.y | |- ( ph -> Y e. B )  | 
					||
| Assertion | qusmulcrng | |- ( ph -> ( [ X ] ( R ~QG I ) .X. [ Y ] ( R ~QG I ) ) = [ ( X .x. Y ) ] ( R ~QG I ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | qusmulcrng.h | |- Q = ( R /s ( R ~QG I ) )  | 
						|
| 2 | qusmulcrng.v | |- B = ( Base ` R )  | 
						|
| 3 | qusmulcrng.p | |- .x. = ( .r ` R )  | 
						|
| 4 | qusmulcrng.a | |- .X. = ( .r ` Q )  | 
						|
| 5 | qusmulcrng.r | |- ( ph -> R e. CRing )  | 
						|
| 6 | qusmulcrng.i | |- ( ph -> I e. ( LIdeal ` R ) )  | 
						|
| 7 | qusmulcrng.x | |- ( ph -> X e. B )  | 
						|
| 8 | qusmulcrng.y | |- ( ph -> Y e. B )  | 
						|
| 9 | 5 | crngringd | |- ( ph -> R e. Ring )  | 
						
| 10 | eqid | |- ( LIdeal ` R ) = ( LIdeal ` R )  | 
						|
| 11 | 10 | crng2idl | |- ( R e. CRing -> ( LIdeal ` R ) = ( 2Ideal ` R ) )  | 
						
| 12 | 5 11 | syl | |- ( ph -> ( LIdeal ` R ) = ( 2Ideal ` R ) )  | 
						
| 13 | 6 12 | eleqtrd | |- ( ph -> I e. ( 2Ideal ` R ) )  | 
						
| 14 | 1 2 3 4 9 13 7 8 | qusmul2idl | |- ( ph -> ( [ X ] ( R ~QG I ) .X. [ Y ] ( R ~QG I ) ) = [ ( X .x. Y ) ] ( R ~QG I ) )  |