| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							qusmulrng.e | 
							 |-  .~ = ( R ~QG S )  | 
						
						
							| 2 | 
							
								
							 | 
							qusmulrng.h | 
							 |-  H = ( R /s .~ )  | 
						
						
							| 3 | 
							
								
							 | 
							qusmulrng.b | 
							 |-  B = ( Base ` R )  | 
						
						
							| 4 | 
							
								
							 | 
							qusmulrng.p | 
							 |-  .x. = ( .r ` R )  | 
						
						
							| 5 | 
							
								
							 | 
							qusmulrng.a | 
							 |-  .xb = ( .r ` H )  | 
						
						
							| 6 | 
							
								2
							 | 
							a1i | 
							 |-  ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> H = ( R /s .~ ) )  | 
						
						
							| 7 | 
							
								3
							 | 
							a1i | 
							 |-  ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> B = ( Base ` R ) )  | 
						
						
							| 8 | 
							
								3 1
							 | 
							eqger | 
							 |-  ( S e. ( SubGrp ` R ) -> .~ Er B )  | 
						
						
							| 9 | 
							
								8
							 | 
							3ad2ant3 | 
							 |-  ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> .~ Er B )  | 
						
						
							| 10 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> R e. Rng )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( 2Ideal ` R ) = ( 2Ideal ` R )  | 
						
						
							| 12 | 
							
								3 1 11 4
							 | 
							2idlcpblrng | 
							 |-  ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) -> ( ( a .~ b /\ c .~ d ) -> ( a .x. c ) .~ ( b .x. d ) ) )  | 
						
						
							| 13 | 
							
								10
							 | 
							anim1i | 
							 |-  ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( b e. B /\ d e. B ) ) -> ( R e. Rng /\ ( b e. B /\ d e. B ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							3anass | 
							 |-  ( ( R e. Rng /\ b e. B /\ d e. B ) <-> ( R e. Rng /\ ( b e. B /\ d e. B ) ) )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							sylibr | 
							 |-  ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( b e. B /\ d e. B ) ) -> ( R e. Rng /\ b e. B /\ d e. B ) )  | 
						
						
							| 16 | 
							
								3 4
							 | 
							rngcl | 
							 |-  ( ( R e. Rng /\ b e. B /\ d e. B ) -> ( b .x. d ) e. B )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl | 
							 |-  ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( b e. B /\ d e. B ) ) -> ( b .x. d ) e. B )  | 
						
						
							| 18 | 
							
								6 7 9 10 12 17 4 5
							 | 
							qusmulval | 
							 |-  ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ X e. B /\ Y e. B ) -> ( [ X ] .~ .xb [ Y ] .~ ) = [ ( X .x. Y ) ] .~ )  | 
						
						
							| 19 | 
							
								18
							 | 
							3expb | 
							 |-  ( ( ( R e. Rng /\ S e. ( 2Ideal ` R ) /\ S e. ( SubGrp ` R ) ) /\ ( X e. B /\ Y e. B ) ) -> ( [ X ] .~ .xb [ Y ] .~ ) = [ ( X .x. Y ) ] .~ )  |