| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							qusring.u | 
							 |-  U = ( R /s ( R ~QG S ) )  | 
						
						
							| 2 | 
							
								
							 | 
							qusring.i | 
							 |-  I = ( 2Ideal ` R )  | 
						
						
							| 3 | 
							
								
							 | 
							qusrhm.x | 
							 |-  X = ( Base ` R )  | 
						
						
							| 4 | 
							
								
							 | 
							qusrhm.f | 
							 |-  F = ( x e. X |-> [ x ] ( R ~QG S ) )  | 
						
						
							| 5 | 
							
								
							 | 
							eqid | 
							 |-  ( 1r ` R ) = ( 1r ` R )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  ( 1r ` U ) = ( 1r ` U )  | 
						
						
							| 7 | 
							
								
							 | 
							eqid | 
							 |-  ( .r ` R ) = ( .r ` R )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( .r ` U ) = ( .r ` U )  | 
						
						
							| 9 | 
							
								
							 | 
							simpl | 
							 |-  ( ( R e. Ring /\ S e. I ) -> R e. Ring )  | 
						
						
							| 10 | 
							
								1 2
							 | 
							qusring | 
							 |-  ( ( R e. Ring /\ S e. I ) -> U e. Ring )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( LIdeal ` R ) = ( LIdeal ` R )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( oppR ` R ) = ( oppR ` R )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( LIdeal ` ( oppR ` R ) ) = ( LIdeal ` ( oppR ` R ) )  | 
						
						
							| 14 | 
							
								11 12 13 2
							 | 
							2idlval | 
							 |-  I = ( ( LIdeal ` R ) i^i ( LIdeal ` ( oppR ` R ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							elin2 | 
							 |-  ( S e. I <-> ( S e. ( LIdeal ` R ) /\ S e. ( LIdeal ` ( oppR ` R ) ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							simplbi | 
							 |-  ( S e. I -> S e. ( LIdeal ` R ) )  | 
						
						
							| 17 | 
							
								11
							 | 
							lidlsubg | 
							 |-  ( ( R e. Ring /\ S e. ( LIdeal ` R ) ) -> S e. ( SubGrp ` R ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							sylan2 | 
							 |-  ( ( R e. Ring /\ S e. I ) -> S e. ( SubGrp ` R ) )  | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( R ~QG S ) = ( R ~QG S )  | 
						
						
							| 20 | 
							
								3 19
							 | 
							eqger | 
							 |-  ( S e. ( SubGrp ` R ) -> ( R ~QG S ) Er X )  | 
						
						
							| 21 | 
							
								18 20
							 | 
							syl | 
							 |-  ( ( R e. Ring /\ S e. I ) -> ( R ~QG S ) Er X )  | 
						
						
							| 22 | 
							
								3
							 | 
							fvexi | 
							 |-  X e. _V  | 
						
						
							| 23 | 
							
								22
							 | 
							a1i | 
							 |-  ( ( R e. Ring /\ S e. I ) -> X e. _V )  | 
						
						
							| 24 | 
							
								21 23 4
							 | 
							divsfval | 
							 |-  ( ( R e. Ring /\ S e. I ) -> ( F ` ( 1r ` R ) ) = [ ( 1r ` R ) ] ( R ~QG S ) )  | 
						
						
							| 25 | 
							
								1 2 5
							 | 
							qus1 | 
							 |-  ( ( R e. Ring /\ S e. I ) -> ( U e. Ring /\ [ ( 1r ` R ) ] ( R ~QG S ) = ( 1r ` U ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							simprd | 
							 |-  ( ( R e. Ring /\ S e. I ) -> [ ( 1r ` R ) ] ( R ~QG S ) = ( 1r ` U ) )  | 
						
						
							| 27 | 
							
								24 26
							 | 
							eqtrd | 
							 |-  ( ( R e. Ring /\ S e. I ) -> ( F ` ( 1r ` R ) ) = ( 1r ` U ) )  | 
						
						
							| 28 | 
							
								1
							 | 
							a1i | 
							 |-  ( ( R e. Ring /\ S e. I ) -> U = ( R /s ( R ~QG S ) ) )  | 
						
						
							| 29 | 
							
								3
							 | 
							a1i | 
							 |-  ( ( R e. Ring /\ S e. I ) -> X = ( Base ` R ) )  | 
						
						
							| 30 | 
							
								3 19 2 7
							 | 
							2idlcpbl | 
							 |-  ( ( R e. Ring /\ S e. I ) -> ( ( a ( R ~QG S ) c /\ b ( R ~QG S ) d ) -> ( a ( .r ` R ) b ) ( R ~QG S ) ( c ( .r ` R ) d ) ) )  | 
						
						
							| 31 | 
							
								3 7
							 | 
							ringcl | 
							 |-  ( ( R e. Ring /\ y e. X /\ z e. X ) -> ( y ( .r ` R ) z ) e. X )  | 
						
						
							| 32 | 
							
								31
							 | 
							3expb | 
							 |-  ( ( R e. Ring /\ ( y e. X /\ z e. X ) ) -> ( y ( .r ` R ) z ) e. X )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantlr | 
							 |-  ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( y ( .r ` R ) z ) e. X )  | 
						
						
							| 34 | 
							
								33
							 | 
							caovclg | 
							 |-  ( ( ( R e. Ring /\ S e. I ) /\ ( c e. X /\ d e. X ) ) -> ( c ( .r ` R ) d ) e. X )  | 
						
						
							| 35 | 
							
								28 29 21 9 30 34 7 8
							 | 
							qusmulval | 
							 |-  ( ( ( R e. Ring /\ S e. I ) /\ y e. X /\ z e. X ) -> ( [ y ] ( R ~QG S ) ( .r ` U ) [ z ] ( R ~QG S ) ) = [ ( y ( .r ` R ) z ) ] ( R ~QG S ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							3expb | 
							 |-  ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( [ y ] ( R ~QG S ) ( .r ` U ) [ z ] ( R ~QG S ) ) = [ ( y ( .r ` R ) z ) ] ( R ~QG S ) )  | 
						
						
							| 37 | 
							
								21
							 | 
							adantr | 
							 |-  ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( R ~QG S ) Er X )  | 
						
						
							| 38 | 
							
								22
							 | 
							a1i | 
							 |-  ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> X e. _V )  | 
						
						
							| 39 | 
							
								37 38 4
							 | 
							divsfval | 
							 |-  ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( F ` y ) = [ y ] ( R ~QG S ) )  | 
						
						
							| 40 | 
							
								37 38 4
							 | 
							divsfval | 
							 |-  ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( F ` z ) = [ z ] ( R ~QG S ) )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							oveq12d | 
							 |-  ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( ( F ` y ) ( .r ` U ) ( F ` z ) ) = ( [ y ] ( R ~QG S ) ( .r ` U ) [ z ] ( R ~QG S ) ) )  | 
						
						
							| 42 | 
							
								37 38 4
							 | 
							divsfval | 
							 |-  ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( F ` ( y ( .r ` R ) z ) ) = [ ( y ( .r ` R ) z ) ] ( R ~QG S ) )  | 
						
						
							| 43 | 
							
								36 41 42
							 | 
							3eqtr4rd | 
							 |-  ( ( ( R e. Ring /\ S e. I ) /\ ( y e. X /\ z e. X ) ) -> ( F ` ( y ( .r ` R ) z ) ) = ( ( F ` y ) ( .r ` U ) ( F ` z ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							ringabl | 
							 |-  ( R e. Ring -> R e. Abel )  | 
						
						
							| 45 | 
							
								44
							 | 
							adantr | 
							 |-  ( ( R e. Ring /\ S e. I ) -> R e. Abel )  | 
						
						
							| 46 | 
							
								
							 | 
							ablnsg | 
							 |-  ( R e. Abel -> ( NrmSGrp ` R ) = ( SubGrp ` R ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							syl | 
							 |-  ( ( R e. Ring /\ S e. I ) -> ( NrmSGrp ` R ) = ( SubGrp ` R ) )  | 
						
						
							| 48 | 
							
								18 47
							 | 
							eleqtrrd | 
							 |-  ( ( R e. Ring /\ S e. I ) -> S e. ( NrmSGrp ` R ) )  | 
						
						
							| 49 | 
							
								3 1 4
							 | 
							qusghm | 
							 |-  ( S e. ( NrmSGrp ` R ) -> F e. ( R GrpHom U ) )  | 
						
						
							| 50 | 
							
								48 49
							 | 
							syl | 
							 |-  ( ( R e. Ring /\ S e. I ) -> F e. ( R GrpHom U ) )  | 
						
						
							| 51 | 
							
								3 5 6 7 8 9 10 27 43 50
							 | 
							isrhm2d | 
							 |-  ( ( R e. Ring /\ S e. I ) -> F e. ( R RingHom U ) )  |