Description: If S is a two-sided ideal in R , then U = R / S is a ring, called the quotient ring of R by S . (Contributed by Mario Carneiro, 14-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | qusring.u | |- U = ( R /s ( R ~QG S ) )  | 
					|
| qusring.i | |- I = ( 2Ideal ` R )  | 
					||
| Assertion | qusring | |- ( ( R e. Ring /\ S e. I ) -> U e. Ring )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | qusring.u | |- U = ( R /s ( R ~QG S ) )  | 
						|
| 2 | qusring.i | |- I = ( 2Ideal ` R )  | 
						|
| 3 | eqid | |- ( 1r ` R ) = ( 1r ` R )  | 
						|
| 4 | 1 2 3 | qus1 | |- ( ( R e. Ring /\ S e. I ) -> ( U e. Ring /\ [ ( 1r ` R ) ] ( R ~QG S ) = ( 1r ` U ) ) )  | 
						
| 5 | 4 | simpld | |- ( ( R e. Ring /\ S e. I ) -> U e. Ring )  |