Metamath Proof Explorer


Theorem qusring

Description: If S is a two-sided ideal in R , then U = R / S is a ring, called the quotient ring of R by S . (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Hypotheses qusring.u
|- U = ( R /s ( R ~QG S ) )
qusring.i
|- I = ( 2Ideal ` R )
Assertion qusring
|- ( ( R e. Ring /\ S e. I ) -> U e. Ring )

Proof

Step Hyp Ref Expression
1 qusring.u
 |-  U = ( R /s ( R ~QG S ) )
2 qusring.i
 |-  I = ( 2Ideal ` R )
3 eqid
 |-  ( 1r ` R ) = ( 1r ` R )
4 1 2 3 qus1
 |-  ( ( R e. Ring /\ S e. I ) -> ( U e. Ring /\ [ ( 1r ` R ) ] ( R ~QG S ) = ( 1r ` U ) ) )
5 4 simpld
 |-  ( ( R e. Ring /\ S e. I ) -> U e. Ring )