Step |
Hyp |
Ref |
Expression |
1 |
|
qusring2.u |
|- ( ph -> U = ( R /s .~ ) ) |
2 |
|
qusring2.v |
|- ( ph -> V = ( Base ` R ) ) |
3 |
|
qusring2.p |
|- .+ = ( +g ` R ) |
4 |
|
qusring2.t |
|- .x. = ( .r ` R ) |
5 |
|
qusring2.o |
|- .1. = ( 1r ` R ) |
6 |
|
qusring2.r |
|- ( ph -> .~ Er V ) |
7 |
|
qusring2.e1 |
|- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .+ b ) .~ ( p .+ q ) ) ) |
8 |
|
qusring2.e2 |
|- ( ph -> ( ( a .~ p /\ b .~ q ) -> ( a .x. b ) .~ ( p .x. q ) ) ) |
9 |
|
qusring2.x |
|- ( ph -> R e. Ring ) |
10 |
|
eqid |
|- ( u e. V |-> [ u ] .~ ) = ( u e. V |-> [ u ] .~ ) |
11 |
|
fvex |
|- ( Base ` R ) e. _V |
12 |
2 11
|
eqeltrdi |
|- ( ph -> V e. _V ) |
13 |
|
erex |
|- ( .~ Er V -> ( V e. _V -> .~ e. _V ) ) |
14 |
6 12 13
|
sylc |
|- ( ph -> .~ e. _V ) |
15 |
1 2 10 14 9
|
qusval |
|- ( ph -> U = ( ( u e. V |-> [ u ] .~ ) "s R ) ) |
16 |
1 2 10 14 9
|
quslem |
|- ( ph -> ( u e. V |-> [ u ] .~ ) : V -onto-> ( V /. .~ ) ) |
17 |
9
|
adantr |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> R e. Ring ) |
18 |
|
simprl |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> x e. V ) |
19 |
2
|
adantr |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> V = ( Base ` R ) ) |
20 |
18 19
|
eleqtrd |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> x e. ( Base ` R ) ) |
21 |
|
simprr |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> y e. V ) |
22 |
21 19
|
eleqtrd |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> y e. ( Base ` R ) ) |
23 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
24 |
23 3
|
ringacl |
|- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x .+ y ) e. ( Base ` R ) ) |
25 |
17 20 22 24
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. ( Base ` R ) ) |
26 |
25 19
|
eleqtrrd |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .+ y ) e. V ) |
27 |
6 12 10 26 7
|
ercpbl |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( ( u e. V |-> [ u ] .~ ) ` a ) = ( ( u e. V |-> [ u ] .~ ) ` p ) /\ ( ( u e. V |-> [ u ] .~ ) ` b ) = ( ( u e. V |-> [ u ] .~ ) ` q ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( a .+ b ) ) = ( ( u e. V |-> [ u ] .~ ) ` ( p .+ q ) ) ) ) |
28 |
23 4
|
ringcl |
|- ( ( R e. Ring /\ x e. ( Base ` R ) /\ y e. ( Base ` R ) ) -> ( x .x. y ) e. ( Base ` R ) ) |
29 |
17 20 22 28
|
syl3anc |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .x. y ) e. ( Base ` R ) ) |
30 |
29 19
|
eleqtrrd |
|- ( ( ph /\ ( x e. V /\ y e. V ) ) -> ( x .x. y ) e. V ) |
31 |
6 12 10 30 8
|
ercpbl |
|- ( ( ph /\ ( a e. V /\ b e. V ) /\ ( p e. V /\ q e. V ) ) -> ( ( ( ( u e. V |-> [ u ] .~ ) ` a ) = ( ( u e. V |-> [ u ] .~ ) ` p ) /\ ( ( u e. V |-> [ u ] .~ ) ` b ) = ( ( u e. V |-> [ u ] .~ ) ` q ) ) -> ( ( u e. V |-> [ u ] .~ ) ` ( a .x. b ) ) = ( ( u e. V |-> [ u ] .~ ) ` ( p .x. q ) ) ) ) |
32 |
15 2 3 4 5 16 27 31 9
|
imasring |
|- ( ph -> ( U e. Ring /\ ( ( u e. V |-> [ u ] .~ ) ` .1. ) = ( 1r ` U ) ) ) |
33 |
6 12 10
|
divsfval |
|- ( ph -> ( ( u e. V |-> [ u ] .~ ) ` .1. ) = [ .1. ] .~ ) |
34 |
33
|
eqcomd |
|- ( ph -> [ .1. ] .~ = ( ( u e. V |-> [ u ] .~ ) ` .1. ) ) |
35 |
34
|
eqeq1d |
|- ( ph -> ( [ .1. ] .~ = ( 1r ` U ) <-> ( ( u e. V |-> [ u ] .~ ) ` .1. ) = ( 1r ` U ) ) ) |
36 |
35
|
anbi2d |
|- ( ph -> ( ( U e. Ring /\ [ .1. ] .~ = ( 1r ` U ) ) <-> ( U e. Ring /\ ( ( u e. V |-> [ u ] .~ ) ` .1. ) = ( 1r ` U ) ) ) ) |
37 |
32 36
|
mpbird |
|- ( ph -> ( U e. Ring /\ [ .1. ] .~ = ( 1r ` U ) ) ) |