Metamath Proof Explorer


Theorem qusrn

Description: The natural map from elements to their cosets is surjective. (Contributed by Thierry Arnoux, 22-Mar-2025)

Ref Expression
Hypotheses qusrn.b
|- B = ( Base ` G )
qusrn.e
|- U = ( B /. ( G ~QG N ) )
qusrn.f
|- F = ( x e. B |-> [ x ] ( G ~QG N ) )
qusrn.n
|- ( ph -> N e. ( NrmSGrp ` G ) )
Assertion qusrn
|- ( ph -> ran F = U )

Proof

Step Hyp Ref Expression
1 qusrn.b
 |-  B = ( Base ` G )
2 qusrn.e
 |-  U = ( B /. ( G ~QG N ) )
3 qusrn.f
 |-  F = ( x e. B |-> [ x ] ( G ~QG N ) )
4 qusrn.n
 |-  ( ph -> N e. ( NrmSGrp ` G ) )
5 eqid
 |-  ( LSSum ` G ) = ( LSSum ` G )
6 nsgsubg
 |-  ( N e. ( NrmSGrp ` G ) -> N e. ( SubGrp ` G ) )
7 4 6 syl
 |-  ( ph -> N e. ( SubGrp ` G ) )
8 7 adantr
 |-  ( ( ph /\ x e. B ) -> N e. ( SubGrp ` G ) )
9 1 5 8 qusbas2
 |-  ( ph -> ( B /. ( G ~QG N ) ) = ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) )
10 2 9 eqtrid
 |-  ( ph -> U = ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) )
11 ovex
 |-  ( G ~QG N ) e. _V
12 ecexg
 |-  ( ( G ~QG N ) e. _V -> [ x ] ( G ~QG N ) e. _V )
13 11 12 mp1i
 |-  ( ( ph /\ x e. B ) -> [ x ] ( G ~QG N ) e. _V )
14 3 13 dmmptd
 |-  ( ph -> dom F = B )
15 14 imaeq2d
 |-  ( ph -> ( F " dom F ) = ( F " B ) )
16 eqid
 |-  ( G /s ( G ~QG N ) ) = ( G /s ( G ~QG N ) )
17 eqid
 |-  ( h e. ( SubGrp ` G ) |-> ran ( x e. h |-> ( { x } ( LSSum ` G ) N ) ) ) = ( h e. ( SubGrp ` G ) |-> ran ( x e. h |-> ( { x } ( LSSum ` G ) N ) ) )
18 subgrcl
 |-  ( N e. ( SubGrp ` G ) -> G e. Grp )
19 1 subgid
 |-  ( G e. Grp -> B e. ( SubGrp ` G ) )
20 4 6 18 19 4syl
 |-  ( ph -> B e. ( SubGrp ` G ) )
21 ssidd
 |-  ( ph -> ( SubGrp ` G ) C_ ( SubGrp ` G ) )
22 1 16 5 17 3 4 20 21 qusima
 |-  ( ph -> ( ( h e. ( SubGrp ` G ) |-> ran ( x e. h |-> ( { x } ( LSSum ` G ) N ) ) ) ` B ) = ( F " B ) )
23 mpteq1
 |-  ( h = B -> ( x e. h |-> ( { x } ( LSSum ` G ) N ) ) = ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) )
24 23 rneqd
 |-  ( h = B -> ran ( x e. h |-> ( { x } ( LSSum ` G ) N ) ) = ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) )
25 20 mptexd
 |-  ( ph -> ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) e. _V )
26 25 rnexd
 |-  ( ph -> ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) e. _V )
27 17 24 20 26 fvmptd3
 |-  ( ph -> ( ( h e. ( SubGrp ` G ) |-> ran ( x e. h |-> ( { x } ( LSSum ` G ) N ) ) ) ` B ) = ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) )
28 15 22 27 3eqtr2rd
 |-  ( ph -> ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) = ( F " dom F ) )
29 imadmrn
 |-  ( F " dom F ) = ran F
30 28 29 eqtrdi
 |-  ( ph -> ran ( x e. B |-> ( { x } ( LSSum ` G ) N ) ) = ran F )
31 10 30 eqtr2d
 |-  ( ph -> ran F = U )