Metamath Proof Explorer


Theorem qustps

Description: A quotient structure is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses qustps.u
|- ( ph -> U = ( R /s E ) )
qustps.v
|- ( ph -> V = ( Base ` R ) )
qustps.e
|- ( ph -> E e. W )
qustps.r
|- ( ph -> R e. TopSp )
Assertion qustps
|- ( ph -> U e. TopSp )

Proof

Step Hyp Ref Expression
1 qustps.u
 |-  ( ph -> U = ( R /s E ) )
2 qustps.v
 |-  ( ph -> V = ( Base ` R ) )
3 qustps.e
 |-  ( ph -> E e. W )
4 qustps.r
 |-  ( ph -> R e. TopSp )
5 eqid
 |-  ( x e. V |-> [ x ] E ) = ( x e. V |-> [ x ] E )
6 1 2 5 3 4 qusval
 |-  ( ph -> U = ( ( x e. V |-> [ x ] E ) "s R ) )
7 1 2 5 3 4 quslem
 |-  ( ph -> ( x e. V |-> [ x ] E ) : V -onto-> ( V /. E ) )
8 6 2 7 4 imastps
 |-  ( ph -> U e. TopSp )