Description: A quotient structure is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qustps.u | |- ( ph -> U = ( R /s E ) ) |
|
qustps.v | |- ( ph -> V = ( Base ` R ) ) |
||
qustps.e | |- ( ph -> E e. W ) |
||
qustps.r | |- ( ph -> R e. TopSp ) |
||
Assertion | qustps | |- ( ph -> U e. TopSp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qustps.u | |- ( ph -> U = ( R /s E ) ) |
|
2 | qustps.v | |- ( ph -> V = ( Base ` R ) ) |
|
3 | qustps.e | |- ( ph -> E e. W ) |
|
4 | qustps.r | |- ( ph -> R e. TopSp ) |
|
5 | eqid | |- ( x e. V |-> [ x ] E ) = ( x e. V |-> [ x ] E ) |
|
6 | 1 2 5 3 4 | qusval | |- ( ph -> U = ( ( x e. V |-> [ x ] E ) "s R ) ) |
7 | 1 2 5 3 4 | quslem | |- ( ph -> ( x e. V |-> [ x ] E ) : V -onto-> ( V /. E ) ) |
8 | 6 2 7 4 | imastps | |- ( ph -> U e. TopSp ) |