| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							qusval.u | 
							 |-  ( ph -> U = ( R /s .~ ) )  | 
						
						
							| 2 | 
							
								
							 | 
							qusval.v | 
							 |-  ( ph -> V = ( Base ` R ) )  | 
						
						
							| 3 | 
							
								
							 | 
							qusval.f | 
							 |-  F = ( x e. V |-> [ x ] .~ )  | 
						
						
							| 4 | 
							
								
							 | 
							qusval.e | 
							 |-  ( ph -> .~ e. W )  | 
						
						
							| 5 | 
							
								
							 | 
							qusval.r | 
							 |-  ( ph -> R e. Z )  | 
						
						
							| 6 | 
							
								
							 | 
							df-qus | 
							 |-  /s = ( r e. _V , e e. _V |-> ( ( x e. ( Base ` r ) |-> [ x ] e ) "s r ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							 |-  ( ph -> /s = ( r e. _V , e e. _V |-> ( ( x e. ( Base ` r ) |-> [ x ] e ) "s r ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> r = R )  | 
						
						
							| 9 | 
							
								8
							 | 
							fveq2d | 
							 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( Base ` r ) = ( Base ` R ) )  | 
						
						
							| 10 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> V = ( Base ` R ) )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqtr4d | 
							 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( Base ` r ) = V )  | 
						
						
							| 12 | 
							
								
							 | 
							eceq2 | 
							 |-  ( e = .~ -> [ x ] e = [ x ] .~ )  | 
						
						
							| 13 | 
							
								12
							 | 
							ad2antll | 
							 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> [ x ] e = [ x ] .~ )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							mpteq12dv | 
							 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( x e. ( Base ` r ) |-> [ x ] e ) = ( x e. V |-> [ x ] .~ ) )  | 
						
						
							| 15 | 
							
								14 3
							 | 
							eqtr4di | 
							 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( x e. ( Base ` r ) |-> [ x ] e ) = F )  | 
						
						
							| 16 | 
							
								15 8
							 | 
							oveq12d | 
							 |-  ( ( ph /\ ( r = R /\ e = .~ ) ) -> ( ( x e. ( Base ` r ) |-> [ x ] e ) "s r ) = ( F "s R ) )  | 
						
						
							| 17 | 
							
								5
							 | 
							elexd | 
							 |-  ( ph -> R e. _V )  | 
						
						
							| 18 | 
							
								4
							 | 
							elexd | 
							 |-  ( ph -> .~ e. _V )  | 
						
						
							| 19 | 
							
								
							 | 
							ovexd | 
							 |-  ( ph -> ( F "s R ) e. _V )  | 
						
						
							| 20 | 
							
								7 16 17 18 19
							 | 
							ovmpod | 
							 |-  ( ph -> ( R /s .~ ) = ( F "s R ) )  | 
						
						
							| 21 | 
							
								1 20
							 | 
							eqtrd | 
							 |-  ( ph -> U = ( F "s R ) )  |