Step |
Hyp |
Ref |
Expression |
1 |
|
eqgvscpbl.v |
|- B = ( Base ` M ) |
2 |
|
eqgvscpbl.e |
|- .~ = ( M ~QG G ) |
3 |
|
eqgvscpbl.s |
|- S = ( Base ` ( Scalar ` M ) ) |
4 |
|
eqgvscpbl.p |
|- .x. = ( .s ` M ) |
5 |
|
eqgvscpbl.m |
|- ( ph -> M e. LMod ) |
6 |
|
eqgvscpbl.g |
|- ( ph -> G e. ( LSubSp ` M ) ) |
7 |
|
eqgvscpbl.k |
|- ( ph -> K e. S ) |
8 |
|
qusvsval.n |
|- N = ( M /s ( M ~QG G ) ) |
9 |
|
qusvsval.m |
|- .xb = ( .s ` N ) |
10 |
|
qusvsval.x |
|- ( ph -> X e. B ) |
11 |
8
|
a1i |
|- ( ph -> N = ( M /s ( M ~QG G ) ) ) |
12 |
1
|
a1i |
|- ( ph -> B = ( Base ` M ) ) |
13 |
|
eqid |
|- ( x e. B |-> [ x ] ( M ~QG G ) ) = ( x e. B |-> [ x ] ( M ~QG G ) ) |
14 |
|
ovex |
|- ( M ~QG G ) e. _V |
15 |
14
|
a1i |
|- ( ph -> ( M ~QG G ) e. _V ) |
16 |
11 12 13 15 5
|
qusval |
|- ( ph -> N = ( ( x e. B |-> [ x ] ( M ~QG G ) ) "s M ) ) |
17 |
11 12 13 15 5
|
quslem |
|- ( ph -> ( x e. B |-> [ x ] ( M ~QG G ) ) : B -onto-> ( B /. ( M ~QG G ) ) ) |
18 |
|
eqid |
|- ( Scalar ` M ) = ( Scalar ` M ) |
19 |
5
|
adantr |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> M e. LMod ) |
20 |
6
|
adantr |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> G e. ( LSubSp ` M ) ) |
21 |
|
simpr1 |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> k e. S ) |
22 |
|
simpr2 |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> u e. B ) |
23 |
|
simpr3 |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> v e. B ) |
24 |
1 2 3 4 19 20 21 8 9 13 22 23
|
qusvscpbl |
|- ( ( ph /\ ( k e. S /\ u e. B /\ v e. B ) ) -> ( ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` u ) = ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` v ) -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( k .x. u ) ) = ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( k .x. v ) ) ) ) |
25 |
16 12 17 5 18 3 4 9 24
|
imasvscaval |
|- ( ( ph /\ K e. S /\ X e. B ) -> ( K .xb ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) ) = ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( K .x. X ) ) ) |
26 |
7 10 25
|
mpd3an23 |
|- ( ph -> ( K .xb ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) ) = ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( K .x. X ) ) ) |
27 |
|
eceq1 |
|- ( x = X -> [ x ] ( M ~QG G ) = [ X ] ( M ~QG G ) ) |
28 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ X ] ( M ~QG G ) e. _V ) |
29 |
14 28
|
ax-mp |
|- [ X ] ( M ~QG G ) e. _V |
30 |
27 13 29
|
fvmpt |
|- ( X e. B -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) = [ X ] ( M ~QG G ) ) |
31 |
10 30
|
syl |
|- ( ph -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) = [ X ] ( M ~QG G ) ) |
32 |
31
|
oveq2d |
|- ( ph -> ( K .xb ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` X ) ) = ( K .xb [ X ] ( M ~QG G ) ) ) |
33 |
1 18 4 3
|
lmodvscl |
|- ( ( M e. LMod /\ K e. S /\ X e. B ) -> ( K .x. X ) e. B ) |
34 |
5 7 10 33
|
syl3anc |
|- ( ph -> ( K .x. X ) e. B ) |
35 |
|
eceq1 |
|- ( x = ( K .x. X ) -> [ x ] ( M ~QG G ) = [ ( K .x. X ) ] ( M ~QG G ) ) |
36 |
|
ecexg |
|- ( ( M ~QG G ) e. _V -> [ ( K .x. X ) ] ( M ~QG G ) e. _V ) |
37 |
14 36
|
ax-mp |
|- [ ( K .x. X ) ] ( M ~QG G ) e. _V |
38 |
35 13 37
|
fvmpt |
|- ( ( K .x. X ) e. B -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( K .x. X ) ) = [ ( K .x. X ) ] ( M ~QG G ) ) |
39 |
34 38
|
syl |
|- ( ph -> ( ( x e. B |-> [ x ] ( M ~QG G ) ) ` ( K .x. X ) ) = [ ( K .x. X ) ] ( M ~QG G ) ) |
40 |
26 32 39
|
3eqtr3d |
|- ( ph -> ( K .xb [ X ] ( M ~QG G ) ) = [ ( K .x. X ) ] ( M ~QG G ) ) |