Metamath Proof Explorer


Theorem r19.21be

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994)

Ref Expression
Hypothesis r19.21be.1
|- ( ph -> A. x e. A ps )
Assertion r19.21be
|- A. x e. A ( ph -> ps )

Proof

Step Hyp Ref Expression
1 r19.21be.1
 |-  ( ph -> A. x e. A ps )
2 1 r19.21bi
 |-  ( ( ph /\ x e. A ) -> ps )
3 2 expcom
 |-  ( x e. A -> ( ph -> ps ) )
4 3 rgen
 |-  A. x e. A ( ph -> ps )