Metamath Proof Explorer


Theorem r19.21bi

Description: Inference from Theorem 19.21 of Margaris p. 90. (Restricted quantifier version.) (Contributed by NM, 20-Nov-1994) (Proof shortened by Wolf Lammen, 11-Jun-2023)

Ref Expression
Hypothesis r19.21bi.1
|- ( ph -> A. x e. A ps )
Assertion r19.21bi
|- ( ( ph /\ x e. A ) -> ps )

Proof

Step Hyp Ref Expression
1 r19.21bi.1
 |-  ( ph -> A. x e. A ps )
2 rspa
 |-  ( ( A. x e. A ps /\ x e. A ) -> ps )
3 1 2 sylan
 |-  ( ( ph /\ x e. A ) -> ps )