Metamath Proof Explorer


Theorem r19.21v

Description: Restricted quantifier version of 19.21v . (Contributed by NM, 15-Oct-2003) (Proof shortened by Andrew Salmon, 30-May-2011) Reduce dependencies on axioms. (Revised by Wolf Lammen, 2-Jan-2020)

Ref Expression
Assertion r19.21v
|- ( A. x e. A ( ph -> ps ) <-> ( ph -> A. x e. A ps ) )

Proof

Step Hyp Ref Expression
1 bi2.04
 |-  ( ( x e. A -> ( ph -> ps ) ) <-> ( ph -> ( x e. A -> ps ) ) )
2 1 albii
 |-  ( A. x ( x e. A -> ( ph -> ps ) ) <-> A. x ( ph -> ( x e. A -> ps ) ) )
3 19.21v
 |-  ( A. x ( ph -> ( x e. A -> ps ) ) <-> ( ph -> A. x ( x e. A -> ps ) ) )
4 2 3 bitri
 |-  ( A. x ( x e. A -> ( ph -> ps ) ) <-> ( ph -> A. x ( x e. A -> ps ) ) )
5 df-ral
 |-  ( A. x e. A ( ph -> ps ) <-> A. x ( x e. A -> ( ph -> ps ) ) )
6 df-ral
 |-  ( A. x e. A ps <-> A. x ( x e. A -> ps ) )
7 6 imbi2i
 |-  ( ( ph -> A. x e. A ps ) <-> ( ph -> A. x ( x e. A -> ps ) ) )
8 4 5 7 3bitr4i
 |-  ( A. x e. A ( ph -> ps ) <-> ( ph -> A. x e. A ps ) )