Metamath Proof Explorer


Theorem r19.23

Description: Restricted quantifier version of 19.23 . See r19.23v for a version requiring fewer axioms. (Contributed by NM, 22-Oct-2010) (Proof shortened by Mario Carneiro, 8-Oct-2016)

Ref Expression
Hypothesis r19.23.1
|- F/ x ps
Assertion r19.23
|- ( A. x e. A ( ph -> ps ) <-> ( E. x e. A ph -> ps ) )

Proof

Step Hyp Ref Expression
1 r19.23.1
 |-  F/ x ps
2 r19.23t
 |-  ( F/ x ps -> ( A. x e. A ( ph -> ps ) <-> ( E. x e. A ph -> ps ) ) )
3 1 2 ax-mp
 |-  ( A. x e. A ( ph -> ps ) <-> ( E. x e. A ph -> ps ) )