Description: Restricted quantifier version of Theorem 19.28 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Glauco Siliprandi, 24-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | r19.28zf.1 | |- F/ x ph |
|
r19.28zf.2 | |- F/_ x A |
||
Assertion | r19.28zf | |- ( A =/= (/) -> ( A. x e. A ( ph /\ ps ) <-> ( ph /\ A. x e. A ps ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.28zf.1 | |- F/ x ph |
|
2 | r19.28zf.2 | |- F/_ x A |
|
3 | r19.26 | |- ( A. x e. A ( ph /\ ps ) <-> ( A. x e. A ph /\ A. x e. A ps ) ) |
|
4 | 1 2 | r19.3rzf | |- ( A =/= (/) -> ( ph <-> A. x e. A ph ) ) |
5 | 4 | anbi1d | |- ( A =/= (/) -> ( ( ph /\ A. x e. A ps ) <-> ( A. x e. A ph /\ A. x e. A ps ) ) ) |
6 | 3 5 | bitr4id | |- ( A =/= (/) -> ( A. x e. A ( ph /\ ps ) <-> ( ph /\ A. x e. A ps ) ) ) |