Metamath Proof Explorer


Theorem r19.28zf

Description: Restricted quantifier version of Theorem 19.28 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Glauco Siliprandi, 24-Jan-2025)

Ref Expression
Hypotheses r19.28zf.1
|- F/ x ph
r19.28zf.2
|- F/_ x A
Assertion r19.28zf
|- ( A =/= (/) -> ( A. x e. A ( ph /\ ps ) <-> ( ph /\ A. x e. A ps ) ) )

Proof

Step Hyp Ref Expression
1 r19.28zf.1
 |-  F/ x ph
2 r19.28zf.2
 |-  F/_ x A
3 r19.26
 |-  ( A. x e. A ( ph /\ ps ) <-> ( A. x e. A ph /\ A. x e. A ps ) )
4 1 2 r19.3rzf
 |-  ( A =/= (/) -> ( ph <-> A. x e. A ph ) )
5 4 anbi1d
 |-  ( A =/= (/) -> ( ( ph /\ A. x e. A ps ) <-> ( A. x e. A ph /\ A. x e. A ps ) ) )
6 3 5 bitr4id
 |-  ( A =/= (/) -> ( A. x e. A ( ph /\ ps ) <-> ( ph /\ A. x e. A ps ) ) )