Metamath Proof Explorer


Theorem r19.28zv

Description: Restricted quantifier version of Theorem 19.28 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004)

Ref Expression
Assertion r19.28zv
|- ( A =/= (/) -> ( A. x e. A ( ph /\ ps ) <-> ( ph /\ A. x e. A ps ) ) )

Proof

Step Hyp Ref Expression
1 nfv
 |-  F/ x ph
2 1 r19.28z
 |-  ( A =/= (/) -> ( A. x e. A ( ph /\ ps ) <-> ( ph /\ A. x e. A ps ) ) )