Metamath Proof Explorer


Theorem r19.29

Description: Restricted quantifier version of 19.29 . See also r19.29r . (Contributed by NM, 31-Aug-1999) (Proof shortened by Andrew Salmon, 30-May-2011)

Ref Expression
Assertion r19.29
|- ( ( A. x e. A ph /\ E. x e. A ps ) -> E. x e. A ( ph /\ ps ) )

Proof

Step Hyp Ref Expression
1 pm3.2
 |-  ( ph -> ( ps -> ( ph /\ ps ) ) )
2 1 ralimi
 |-  ( A. x e. A ph -> A. x e. A ( ps -> ( ph /\ ps ) ) )
3 rexim
 |-  ( A. x e. A ( ps -> ( ph /\ ps ) ) -> ( E. x e. A ps -> E. x e. A ( ph /\ ps ) ) )
4 2 3 syl
 |-  ( A. x e. A ph -> ( E. x e. A ps -> E. x e. A ( ph /\ ps ) ) )
5 4 imp
 |-  ( ( A. x e. A ph /\ E. x e. A ps ) -> E. x e. A ( ph /\ ps ) )