Description: Restricted quantifier version of 19.29 . See also r19.29r . (Contributed by NM, 31-Aug-1999) (Proof shortened by Andrew Salmon, 30-May-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | r19.29 | |- ( ( A. x e. A ph /\ E. x e. A ps ) -> E. x e. A ( ph /\ ps ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.2 | |- ( ph -> ( ps -> ( ph /\ ps ) ) ) |
|
2 | 1 | ralimi | |- ( A. x e. A ph -> A. x e. A ( ps -> ( ph /\ ps ) ) ) |
3 | rexim | |- ( A. x e. A ( ps -> ( ph /\ ps ) ) -> ( E. x e. A ps -> E. x e. A ( ph /\ ps ) ) ) |
|
4 | 2 3 | syl | |- ( A. x e. A ph -> ( E. x e. A ps -> E. x e. A ( ph /\ ps ) ) ) |
5 | 4 | imp | |- ( ( A. x e. A ph /\ E. x e. A ps ) -> E. x e. A ( ph /\ ps ) ) |