Metamath Proof Explorer


Theorem r19.29af

Description: A commonly used pattern based on r19.29 . See r19.29a , r19.29an for a variant when x is disjoint from ph . (Contributed by Thierry Arnoux, 29-Nov-2017)

Ref Expression
Hypotheses r19.29af.0
|- F/ x ph
r19.29af.1
|- ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
r19.29af.2
|- ( ph -> E. x e. A ps )
Assertion r19.29af
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 r19.29af.0
 |-  F/ x ph
2 r19.29af.1
 |-  ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
3 r19.29af.2
 |-  ( ph -> E. x e. A ps )
4 nfv
 |-  F/ x ch
5 1 4 2 3 r19.29af2
 |-  ( ph -> ch )