Metamath Proof Explorer


Theorem r19.29af2

Description: A commonly used pattern based on r19.29 . (Contributed by Thierry Arnoux, 17-Dec-2017) (Proof shortened by OpenAI, 25-Mar-2020)

Ref Expression
Hypotheses r19.29af2.p
|- F/ x ph
r19.29af2.c
|- F/ x ch
r19.29af2.1
|- ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
r19.29af2.2
|- ( ph -> E. x e. A ps )
Assertion r19.29af2
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 r19.29af2.p
 |-  F/ x ph
2 r19.29af2.c
 |-  F/ x ch
3 r19.29af2.1
 |-  ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
4 r19.29af2.2
 |-  ( ph -> E. x e. A ps )
5 3 exp31
 |-  ( ph -> ( x e. A -> ( ps -> ch ) ) )
6 1 2 5 rexlimd
 |-  ( ph -> ( E. x e. A ps -> ch ) )
7 4 6 mpd
 |-  ( ph -> ch )