Metamath Proof Explorer


Theorem r19.29an

Description: A commonly used pattern in the spirit of r19.29 . (Contributed by Thierry Arnoux, 29-Dec-2019) (Proof shortened by Wolf Lammen, 17-Jun-2023)

Ref Expression
Hypothesis rexlimdva2.1
|- ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
Assertion r19.29an
|- ( ( ph /\ E. x e. A ps ) -> ch )

Proof

Step Hyp Ref Expression
1 rexlimdva2.1
 |-  ( ( ( ph /\ x e. A ) /\ ps ) -> ch )
2 1 rexlimdva2
 |-  ( ph -> ( E. x e. A ps -> ch ) )
3 2 imp
 |-  ( ( ph /\ E. x e. A ps ) -> ch )