Metamath Proof Explorer


Theorem r19.29imd

Description: Theorem 19.29 of Margaris p. 90 with an implication in the hypothesis containing the generalization, deduction version. (Contributed by AV, 19-Jan-2019)

Ref Expression
Hypotheses r19.29imd.1
|- ( ph -> E. x e. A ps )
r19.29imd.2
|- ( ph -> A. x e. A ( ps -> ch ) )
Assertion r19.29imd
|- ( ph -> E. x e. A ( ps /\ ch ) )

Proof

Step Hyp Ref Expression
1 r19.29imd.1
 |-  ( ph -> E. x e. A ps )
2 r19.29imd.2
 |-  ( ph -> A. x e. A ( ps -> ch ) )
3 r19.29r
 |-  ( ( E. x e. A ps /\ A. x e. A ( ps -> ch ) ) -> E. x e. A ( ps /\ ( ps -> ch ) ) )
4 1 2 3 syl2anc
 |-  ( ph -> E. x e. A ( ps /\ ( ps -> ch ) ) )
5 abai
 |-  ( ( ps /\ ch ) <-> ( ps /\ ( ps -> ch ) ) )
6 5 rexbii
 |-  ( E. x e. A ( ps /\ ch ) <-> E. x e. A ( ps /\ ( ps -> ch ) ) )
7 4 6 sylibr
 |-  ( ph -> E. x e. A ( ps /\ ch ) )