Metamath Proof Explorer


Theorem r19.29vva

Description: A commonly used pattern based on r19.29 , version with two restricted quantifiers. (Contributed by Thierry Arnoux, 26-Nov-2017) (Proof shortened by Wolf Lammen, 4-Nov-2024)

Ref Expression
Hypotheses r19.29vva.1
|- ( ( ( ( ph /\ x e. A ) /\ y e. B ) /\ ps ) -> ch )
r19.29vva.2
|- ( ph -> E. x e. A E. y e. B ps )
Assertion r19.29vva
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 r19.29vva.1
 |-  ( ( ( ( ph /\ x e. A ) /\ y e. B ) /\ ps ) -> ch )
2 r19.29vva.2
 |-  ( ph -> E. x e. A E. y e. B ps )
3 1 2 reximddv2
 |-  ( ph -> E. x e. A E. y e. B ch )
4 idd
 |-  ( ( x e. A /\ y e. B ) -> ( ch -> ch ) )
5 4 rexlimivv
 |-  ( E. x e. A E. y e. B ch -> ch )
6 3 5 syl
 |-  ( ph -> ch )