Description: Obsolete version of r19.29vva as of 4-Nov-2024. (Contributed by Thierry Arnoux, 26-Nov-2017) (Proof shortened by Wolf Lammen, 29-Jun-2023) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | r19.29vva.1 | |- ( ( ( ( ph /\ x e. A ) /\ y e. B ) /\ ps ) -> ch ) |
|
r19.29vva.2 | |- ( ph -> E. x e. A E. y e. B ps ) |
||
Assertion | r19.29vvaOLD | |- ( ph -> ch ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29vva.1 | |- ( ( ( ( ph /\ x e. A ) /\ y e. B ) /\ ps ) -> ch ) |
|
2 | r19.29vva.2 | |- ( ph -> E. x e. A E. y e. B ps ) |
|
3 | 1 2 | reximddv2 | |- ( ph -> E. x e. A E. y e. B ch ) |
4 | id | |- ( ch -> ch ) |
|
5 | 4 | rexlimivw | |- ( E. y e. B ch -> ch ) |
6 | 5 | reximi | |- ( E. x e. A E. y e. B ch -> E. x e. A ch ) |
7 | 4 | rexlimivw | |- ( E. x e. A ch -> ch ) |
8 | 3 6 7 | 3syl | |- ( ph -> ch ) |