Metamath Proof Explorer


Theorem r19.29vvaOLD

Description: Obsolete version of r19.29vva as of 4-Nov-2024. (Contributed by Thierry Arnoux, 26-Nov-2017) (Proof shortened by Wolf Lammen, 29-Jun-2023) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses r19.29vva.1
|- ( ( ( ( ph /\ x e. A ) /\ y e. B ) /\ ps ) -> ch )
r19.29vva.2
|- ( ph -> E. x e. A E. y e. B ps )
Assertion r19.29vvaOLD
|- ( ph -> ch )

Proof

Step Hyp Ref Expression
1 r19.29vva.1
 |-  ( ( ( ( ph /\ x e. A ) /\ y e. B ) /\ ps ) -> ch )
2 r19.29vva.2
 |-  ( ph -> E. x e. A E. y e. B ps )
3 1 2 reximddv2
 |-  ( ph -> E. x e. A E. y e. B ch )
4 id
 |-  ( ch -> ch )
5 4 rexlimivw
 |-  ( E. y e. B ch -> ch )
6 5 reximi
 |-  ( E. x e. A E. y e. B ch -> E. x e. A ch )
7 4 rexlimivw
 |-  ( E. x e. A ch -> ch )
8 3 6 7 3syl
 |-  ( ph -> ch )