Metamath Proof Explorer


Theorem r19.2z

Description: Theorem 19.2 of Margaris p. 89 with restricted quantifiers (compare 19.2 ). The restricted version is valid only when the domain of quantification is not empty. (Contributed by NM, 15-Nov-2003)

Ref Expression
Assertion r19.2z
|- ( ( A =/= (/) /\ A. x e. A ph ) -> E. x e. A ph )

Proof

Step Hyp Ref Expression
1 df-ral
 |-  ( A. x e. A ph <-> A. x ( x e. A -> ph ) )
2 exintr
 |-  ( A. x ( x e. A -> ph ) -> ( E. x x e. A -> E. x ( x e. A /\ ph ) ) )
3 1 2 sylbi
 |-  ( A. x e. A ph -> ( E. x x e. A -> E. x ( x e. A /\ ph ) ) )
4 n0
 |-  ( A =/= (/) <-> E. x x e. A )
5 df-rex
 |-  ( E. x e. A ph <-> E. x ( x e. A /\ ph ) )
6 3 4 5 3imtr4g
 |-  ( A. x e. A ph -> ( A =/= (/) -> E. x e. A ph ) )
7 6 impcom
 |-  ( ( A =/= (/) /\ A. x e. A ph ) -> E. x e. A ph )