Metamath Proof Explorer


Theorem r19.36zv

Description: Restricted quantifier version of Theorem 19.36 of Margaris p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 20-Sep-2003)

Ref Expression
Assertion r19.36zv
|- ( A =/= (/) -> ( E. x e. A ( ph -> ps ) <-> ( A. x e. A ph -> ps ) ) )

Proof

Step Hyp Ref Expression
1 r19.35
 |-  ( E. x e. A ( ph -> ps ) <-> ( A. x e. A ph -> E. x e. A ps ) )
2 r19.9rzv
 |-  ( A =/= (/) -> ( ps <-> E. x e. A ps ) )
3 2 imbi2d
 |-  ( A =/= (/) -> ( ( A. x e. A ph -> ps ) <-> ( A. x e. A ph -> E. x e. A ps ) ) )
4 1 3 bitr4id
 |-  ( A =/= (/) -> ( E. x e. A ( ph -> ps ) <-> ( A. x e. A ph -> ps ) ) )