Description: Restricted quantification of wff not containing quantified variable. (Contributed by FL, 3-Jan-2008)
Ref | Expression | ||
---|---|---|---|
Hypothesis | r19.3rz.1 | |- F/ x ph |
|
Assertion | r19.3rz | |- ( A =/= (/) -> ( ph <-> A. x e. A ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.3rz.1 | |- F/ x ph |
|
2 | n0 | |- ( A =/= (/) <-> E. x x e. A ) |
|
3 | biimt | |- ( E. x x e. A -> ( ph <-> ( E. x x e. A -> ph ) ) ) |
|
4 | 2 3 | sylbi | |- ( A =/= (/) -> ( ph <-> ( E. x x e. A -> ph ) ) ) |
5 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
6 | 1 | 19.23 | |- ( A. x ( x e. A -> ph ) <-> ( E. x x e. A -> ph ) ) |
7 | 5 6 | bitri | |- ( A. x e. A ph <-> ( E. x x e. A -> ph ) ) |
8 | 4 7 | bitr4di | |- ( A =/= (/) -> ( ph <-> A. x e. A ph ) ) |