Description: Restricted quantification of wff not containing quantified variable. (Contributed by Glauco Siliprandi, 24-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Hypotheses | r19.3rzf.1 | |- F/ x ph |
|
r19.3rzf.2 | |- F/_ x A |
||
Assertion | r19.3rzf | |- ( A =/= (/) -> ( ph <-> A. x e. A ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.3rzf.1 | |- F/ x ph |
|
2 | r19.3rzf.2 | |- F/_ x A |
|
3 | 2 | n0f | |- ( A =/= (/) <-> E. x x e. A ) |
4 | biimt | |- ( E. x x e. A -> ( ph <-> ( E. x x e. A -> ph ) ) ) |
|
5 | 3 4 | sylbi | |- ( A =/= (/) -> ( ph <-> ( E. x x e. A -> ph ) ) ) |
6 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
7 | 1 | 19.23 | |- ( A. x ( x e. A -> ph ) <-> ( E. x x e. A -> ph ) ) |
8 | 6 7 | bitri | |- ( A. x e. A ph <-> ( E. x x e. A -> ph ) ) |
9 | 5 8 | bitr4di | |- ( A =/= (/) -> ( ph <-> A. x e. A ph ) ) |