Metamath Proof Explorer


Theorem r19.44v

Description: One direction of a restricted quantifier version of 19.44 . The other direction holds when A is nonempty, see r19.44zv . (Contributed by NM, 2-Apr-2004)

Ref Expression
Assertion r19.44v
|- ( E. x e. A ( ph \/ ps ) -> ( E. x e. A ph \/ ps ) )

Proof

Step Hyp Ref Expression
1 r19.43
 |-  ( E. x e. A ( ph \/ ps ) <-> ( E. x e. A ph \/ E. x e. A ps ) )
2 id
 |-  ( ps -> ps )
3 2 rexlimivw
 |-  ( E. x e. A ps -> ps )
4 3 orim2i
 |-  ( ( E. x e. A ph \/ E. x e. A ps ) -> ( E. x e. A ph \/ ps ) )
5 1 4 sylbi
 |-  ( E. x e. A ( ph \/ ps ) -> ( E. x e. A ph \/ ps ) )