Description: Restricted quantification of wff not containing quantified variable. (Contributed by NM, 27-May-1998)
Ref | Expression | ||
---|---|---|---|
Assertion | r19.9rzv | |- ( A =/= (/) -> ( ph <-> E. x e. A ph ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 | |- ( E. x e. A ph <-> -. A. x e. A -. ph ) |
|
2 | r19.3rzv | |- ( A =/= (/) -> ( -. ph <-> A. x e. A -. ph ) ) |
|
3 | 2 | con1bid | |- ( A =/= (/) -> ( -. A. x e. A -. ph <-> ph ) ) |
4 | 1 3 | bitr2id | |- ( A =/= (/) -> ( ph <-> E. x e. A ph ) ) |