Step |
Hyp |
Ref |
Expression |
1 |
|
triun |
|- ( A. x e. On Tr ( R1 ` x ) -> Tr U_ x e. On ( R1 ` x ) ) |
2 |
|
r1tr |
|- Tr ( R1 ` x ) |
3 |
2
|
a1i |
|- ( x e. On -> Tr ( R1 ` x ) ) |
4 |
1 3
|
mprg |
|- Tr U_ x e. On ( R1 ` x ) |
5 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
6 |
5
|
simpli |
|- Fun R1 |
7 |
|
funiunfv |
|- ( Fun R1 -> U_ x e. On ( R1 ` x ) = U. ( R1 " On ) ) |
8 |
6 7
|
ax-mp |
|- U_ x e. On ( R1 ` x ) = U. ( R1 " On ) |
9 |
|
treq |
|- ( U_ x e. On ( R1 ` x ) = U. ( R1 " On ) -> ( Tr U_ x e. On ( R1 ` x ) <-> Tr U. ( R1 " On ) ) ) |
10 |
8 9
|
ax-mp |
|- ( Tr U_ x e. On ( R1 ` x ) <-> Tr U. ( R1 " On ) ) |
11 |
4 10
|
mpbi |
|- Tr U. ( R1 " On ) |
12 |
|
trss |
|- ( Tr U. ( R1 " On ) -> ( A e. U. ( R1 " On ) -> A C_ U. ( R1 " On ) ) ) |
13 |
11 12
|
ax-mp |
|- ( A e. U. ( R1 " On ) -> A C_ U. ( R1 " On ) ) |