| Step | Hyp | Ref | Expression | 
						
							| 1 |  | r1funlim |  |-  ( Fun R1 /\ Lim dom R1 ) | 
						
							| 2 | 1 | simpri |  |-  Lim dom R1 | 
						
							| 3 |  | limord |  |-  ( Lim dom R1 -> Ord dom R1 ) | 
						
							| 4 |  | ordsson |  |-  ( Ord dom R1 -> dom R1 C_ On ) | 
						
							| 5 | 2 3 4 | mp2b |  |-  dom R1 C_ On | 
						
							| 6 |  | elfvdm |  |-  ( A e. ( R1 ` B ) -> B e. dom R1 ) | 
						
							| 7 | 5 6 | sselid |  |-  ( A e. ( R1 ` B ) -> B e. On ) | 
						
							| 8 |  | r1tr |  |-  Tr ( R1 ` B ) | 
						
							| 9 |  | trss |  |-  ( Tr ( R1 ` B ) -> ( A e. ( R1 ` B ) -> A C_ ( R1 ` B ) ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  ( A e. ( R1 ` B ) -> A C_ ( R1 ` B ) ) | 
						
							| 11 |  | elpwg |  |-  ( A e. ( R1 ` B ) -> ( A e. ~P ( R1 ` B ) <-> A C_ ( R1 ` B ) ) ) | 
						
							| 12 | 10 11 | mpbird |  |-  ( A e. ( R1 ` B ) -> A e. ~P ( R1 ` B ) ) | 
						
							| 13 |  | r1sucg |  |-  ( B e. dom R1 -> ( R1 ` suc B ) = ~P ( R1 ` B ) ) | 
						
							| 14 | 6 13 | syl |  |-  ( A e. ( R1 ` B ) -> ( R1 ` suc B ) = ~P ( R1 ` B ) ) | 
						
							| 15 | 12 14 | eleqtrrd |  |-  ( A e. ( R1 ` B ) -> A e. ( R1 ` suc B ) ) | 
						
							| 16 |  | suceq |  |-  ( x = B -> suc x = suc B ) | 
						
							| 17 | 16 | fveq2d |  |-  ( x = B -> ( R1 ` suc x ) = ( R1 ` suc B ) ) | 
						
							| 18 | 17 | eleq2d |  |-  ( x = B -> ( A e. ( R1 ` suc x ) <-> A e. ( R1 ` suc B ) ) ) | 
						
							| 19 | 18 | rspcev |  |-  ( ( B e. On /\ A e. ( R1 ` suc B ) ) -> E. x e. On A e. ( R1 ` suc x ) ) | 
						
							| 20 | 7 15 19 | syl2anc |  |-  ( A e. ( R1 ` B ) -> E. x e. On A e. ( R1 ` suc x ) ) | 
						
							| 21 |  | rankwflemb |  |-  ( A e. U. ( R1 " On ) <-> E. x e. On A e. ( R1 ` suc x ) ) | 
						
							| 22 | 20 21 | sylibr |  |-  ( A e. ( R1 ` B ) -> A e. U. ( R1 " On ) ) |