| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( n = (/) -> ( R1 ` n ) = ( R1 ` (/) ) ) | 
						
							| 2 | 1 | eleq1d |  |-  ( n = (/) -> ( ( R1 ` n ) e. Fin <-> ( R1 ` (/) ) e. Fin ) ) | 
						
							| 3 |  | fveq2 |  |-  ( n = m -> ( R1 ` n ) = ( R1 ` m ) ) | 
						
							| 4 | 3 | eleq1d |  |-  ( n = m -> ( ( R1 ` n ) e. Fin <-> ( R1 ` m ) e. Fin ) ) | 
						
							| 5 |  | fveq2 |  |-  ( n = suc m -> ( R1 ` n ) = ( R1 ` suc m ) ) | 
						
							| 6 | 5 | eleq1d |  |-  ( n = suc m -> ( ( R1 ` n ) e. Fin <-> ( R1 ` suc m ) e. Fin ) ) | 
						
							| 7 |  | fveq2 |  |-  ( n = A -> ( R1 ` n ) = ( R1 ` A ) ) | 
						
							| 8 | 7 | eleq1d |  |-  ( n = A -> ( ( R1 ` n ) e. Fin <-> ( R1 ` A ) e. Fin ) ) | 
						
							| 9 |  | r10 |  |-  ( R1 ` (/) ) = (/) | 
						
							| 10 |  | 0fi |  |-  (/) e. Fin | 
						
							| 11 | 9 10 | eqeltri |  |-  ( R1 ` (/) ) e. Fin | 
						
							| 12 |  | pwfi |  |-  ( ( R1 ` m ) e. Fin <-> ~P ( R1 ` m ) e. Fin ) | 
						
							| 13 |  | r1funlim |  |-  ( Fun R1 /\ Lim dom R1 ) | 
						
							| 14 | 13 | simpri |  |-  Lim dom R1 | 
						
							| 15 |  | limomss |  |-  ( Lim dom R1 -> _om C_ dom R1 ) | 
						
							| 16 | 14 15 | ax-mp |  |-  _om C_ dom R1 | 
						
							| 17 | 16 | sseli |  |-  ( m e. _om -> m e. dom R1 ) | 
						
							| 18 |  | r1sucg |  |-  ( m e. dom R1 -> ( R1 ` suc m ) = ~P ( R1 ` m ) ) | 
						
							| 19 | 17 18 | syl |  |-  ( m e. _om -> ( R1 ` suc m ) = ~P ( R1 ` m ) ) | 
						
							| 20 | 19 | eleq1d |  |-  ( m e. _om -> ( ( R1 ` suc m ) e. Fin <-> ~P ( R1 ` m ) e. Fin ) ) | 
						
							| 21 | 12 20 | bitr4id |  |-  ( m e. _om -> ( ( R1 ` m ) e. Fin <-> ( R1 ` suc m ) e. Fin ) ) | 
						
							| 22 | 21 | biimpd |  |-  ( m e. _om -> ( ( R1 ` m ) e. Fin -> ( R1 ` suc m ) e. Fin ) ) | 
						
							| 23 | 2 4 6 8 11 22 | finds |  |-  ( A e. _om -> ( R1 ` A ) e. Fin ) |