Metamath Proof Explorer


Theorem r1omtsk

Description: The set of hereditarily finite sets is a Tarski class. (The Tarski-Grothendieck Axiom is not needed for this theorem.) (Contributed by Mario Carneiro, 28-May-2013)

Ref Expression
Assertion r1omtsk
|- ( R1 ` _om ) e. Tarski

Proof

Step Hyp Ref Expression
1 omina
 |-  _om e. Inacc
2 inatsk
 |-  ( _om e. Inacc -> ( R1 ` _om ) e. Tarski )
3 1 2 ax-mp
 |-  ( R1 ` _om ) e. Tarski