Description: The set of hereditarily finite sets is a Tarski class. (The Tarski-Grothendieck Axiom is not needed for this theorem.) (Contributed by Mario Carneiro, 28-May-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | r1omtsk | |- ( R1 ` _om ) e. Tarski |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omina | |- _om e. Inacc |
|
2 | inatsk | |- ( _om e. Inacc -> ( R1 ` _om ) e. Tarski ) |
|
3 | 1 2 | ax-mp | |- ( R1 ` _om ) e. Tarski |