| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( B e. dom R1 /\ A e. B ) -> B e. dom R1 ) |
| 2 |
|
r1funlim |
|- ( Fun R1 /\ Lim dom R1 ) |
| 3 |
2
|
simpri |
|- Lim dom R1 |
| 4 |
|
limord |
|- ( Lim dom R1 -> Ord dom R1 ) |
| 5 |
3 4
|
ax-mp |
|- Ord dom R1 |
| 6 |
|
ordsson |
|- ( Ord dom R1 -> dom R1 C_ On ) |
| 7 |
5 6
|
ax-mp |
|- dom R1 C_ On |
| 8 |
7
|
sseli |
|- ( B e. dom R1 -> B e. On ) |
| 9 |
1 8
|
syl |
|- ( ( B e. dom R1 /\ A e. B ) -> B e. On ) |
| 10 |
|
onelon |
|- ( ( B e. On /\ A e. B ) -> A e. On ) |
| 11 |
8 10
|
sylan |
|- ( ( B e. dom R1 /\ A e. B ) -> A e. On ) |
| 12 |
|
onsuc |
|- ( A e. On -> suc A e. On ) |
| 13 |
11 12
|
syl |
|- ( ( B e. dom R1 /\ A e. B ) -> suc A e. On ) |
| 14 |
|
eloni |
|- ( B e. On -> Ord B ) |
| 15 |
|
ordsucss |
|- ( Ord B -> ( A e. B -> suc A C_ B ) ) |
| 16 |
14 15
|
syl |
|- ( B e. On -> ( A e. B -> suc A C_ B ) ) |
| 17 |
16
|
imp |
|- ( ( B e. On /\ A e. B ) -> suc A C_ B ) |
| 18 |
8 17
|
sylan |
|- ( ( B e. dom R1 /\ A e. B ) -> suc A C_ B ) |
| 19 |
|
eleq1 |
|- ( x = suc A -> ( x e. dom R1 <-> suc A e. dom R1 ) ) |
| 20 |
|
fveq2 |
|- ( x = suc A -> ( R1 ` x ) = ( R1 ` suc A ) ) |
| 21 |
20
|
eleq2d |
|- ( x = suc A -> ( ( R1 ` A ) e. ( R1 ` x ) <-> ( R1 ` A ) e. ( R1 ` suc A ) ) ) |
| 22 |
19 21
|
imbi12d |
|- ( x = suc A -> ( ( x e. dom R1 -> ( R1 ` A ) e. ( R1 ` x ) ) <-> ( suc A e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc A ) ) ) ) |
| 23 |
|
eleq1 |
|- ( x = y -> ( x e. dom R1 <-> y e. dom R1 ) ) |
| 24 |
|
fveq2 |
|- ( x = y -> ( R1 ` x ) = ( R1 ` y ) ) |
| 25 |
24
|
eleq2d |
|- ( x = y -> ( ( R1 ` A ) e. ( R1 ` x ) <-> ( R1 ` A ) e. ( R1 ` y ) ) ) |
| 26 |
23 25
|
imbi12d |
|- ( x = y -> ( ( x e. dom R1 -> ( R1 ` A ) e. ( R1 ` x ) ) <-> ( y e. dom R1 -> ( R1 ` A ) e. ( R1 ` y ) ) ) ) |
| 27 |
|
eleq1 |
|- ( x = suc y -> ( x e. dom R1 <-> suc y e. dom R1 ) ) |
| 28 |
|
fveq2 |
|- ( x = suc y -> ( R1 ` x ) = ( R1 ` suc y ) ) |
| 29 |
28
|
eleq2d |
|- ( x = suc y -> ( ( R1 ` A ) e. ( R1 ` x ) <-> ( R1 ` A ) e. ( R1 ` suc y ) ) ) |
| 30 |
27 29
|
imbi12d |
|- ( x = suc y -> ( ( x e. dom R1 -> ( R1 ` A ) e. ( R1 ` x ) ) <-> ( suc y e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc y ) ) ) ) |
| 31 |
|
eleq1 |
|- ( x = B -> ( x e. dom R1 <-> B e. dom R1 ) ) |
| 32 |
|
fveq2 |
|- ( x = B -> ( R1 ` x ) = ( R1 ` B ) ) |
| 33 |
32
|
eleq2d |
|- ( x = B -> ( ( R1 ` A ) e. ( R1 ` x ) <-> ( R1 ` A ) e. ( R1 ` B ) ) ) |
| 34 |
31 33
|
imbi12d |
|- ( x = B -> ( ( x e. dom R1 -> ( R1 ` A ) e. ( R1 ` x ) ) <-> ( B e. dom R1 -> ( R1 ` A ) e. ( R1 ` B ) ) ) ) |
| 35 |
|
fvex |
|- ( R1 ` A ) e. _V |
| 36 |
35
|
pwid |
|- ( R1 ` A ) e. ~P ( R1 ` A ) |
| 37 |
|
limsuc |
|- ( Lim dom R1 -> ( A e. dom R1 <-> suc A e. dom R1 ) ) |
| 38 |
3 37
|
ax-mp |
|- ( A e. dom R1 <-> suc A e. dom R1 ) |
| 39 |
|
r1sucg |
|- ( A e. dom R1 -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |
| 40 |
38 39
|
sylbir |
|- ( suc A e. dom R1 -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |
| 41 |
36 40
|
eleqtrrid |
|- ( suc A e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc A ) ) |
| 42 |
41
|
a1i |
|- ( suc A e. On -> ( suc A e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc A ) ) ) |
| 43 |
|
limsuc |
|- ( Lim dom R1 -> ( y e. dom R1 <-> suc y e. dom R1 ) ) |
| 44 |
3 43
|
ax-mp |
|- ( y e. dom R1 <-> suc y e. dom R1 ) |
| 45 |
|
r1tr |
|- Tr ( R1 ` y ) |
| 46 |
|
dftr4 |
|- ( Tr ( R1 ` y ) <-> ( R1 ` y ) C_ ~P ( R1 ` y ) ) |
| 47 |
45 46
|
mpbi |
|- ( R1 ` y ) C_ ~P ( R1 ` y ) |
| 48 |
|
r1sucg |
|- ( y e. dom R1 -> ( R1 ` suc y ) = ~P ( R1 ` y ) ) |
| 49 |
47 48
|
sseqtrrid |
|- ( y e. dom R1 -> ( R1 ` y ) C_ ( R1 ` suc y ) ) |
| 50 |
49
|
sseld |
|- ( y e. dom R1 -> ( ( R1 ` A ) e. ( R1 ` y ) -> ( R1 ` A ) e. ( R1 ` suc y ) ) ) |
| 51 |
50
|
a2i |
|- ( ( y e. dom R1 -> ( R1 ` A ) e. ( R1 ` y ) ) -> ( y e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc y ) ) ) |
| 52 |
44 51
|
biimtrrid |
|- ( ( y e. dom R1 -> ( R1 ` A ) e. ( R1 ` y ) ) -> ( suc y e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc y ) ) ) |
| 53 |
52
|
a1i |
|- ( ( ( y e. On /\ suc A e. On ) /\ suc A C_ y ) -> ( ( y e. dom R1 -> ( R1 ` A ) e. ( R1 ` y ) ) -> ( suc y e. dom R1 -> ( R1 ` A ) e. ( R1 ` suc y ) ) ) ) |
| 54 |
|
simprl |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> suc A C_ x ) |
| 55 |
|
simplr |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> suc A e. On ) |
| 56 |
|
onsucb |
|- ( A e. On <-> suc A e. On ) |
| 57 |
55 56
|
sylibr |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> A e. On ) |
| 58 |
|
limord |
|- ( Lim x -> Ord x ) |
| 59 |
58
|
ad2antrr |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> Ord x ) |
| 60 |
|
ordelsuc |
|- ( ( A e. On /\ Ord x ) -> ( A e. x <-> suc A C_ x ) ) |
| 61 |
57 59 60
|
syl2anc |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( A e. x <-> suc A C_ x ) ) |
| 62 |
54 61
|
mpbird |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> A e. x ) |
| 63 |
|
limsuc |
|- ( Lim x -> ( A e. x <-> suc A e. x ) ) |
| 64 |
63
|
ad2antrr |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( A e. x <-> suc A e. x ) ) |
| 65 |
62 64
|
mpbid |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> suc A e. x ) |
| 66 |
|
simprr |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> x e. dom R1 ) |
| 67 |
|
ordtr1 |
|- ( Ord dom R1 -> ( ( A e. x /\ x e. dom R1 ) -> A e. dom R1 ) ) |
| 68 |
5 67
|
ax-mp |
|- ( ( A e. x /\ x e. dom R1 ) -> A e. dom R1 ) |
| 69 |
62 66 68
|
syl2anc |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> A e. dom R1 ) |
| 70 |
69 39
|
syl |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( R1 ` suc A ) = ~P ( R1 ` A ) ) |
| 71 |
36 70
|
eleqtrrid |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( R1 ` A ) e. ( R1 ` suc A ) ) |
| 72 |
|
fveq2 |
|- ( y = suc A -> ( R1 ` y ) = ( R1 ` suc A ) ) |
| 73 |
72
|
eleq2d |
|- ( y = suc A -> ( ( R1 ` A ) e. ( R1 ` y ) <-> ( R1 ` A ) e. ( R1 ` suc A ) ) ) |
| 74 |
73
|
rspcev |
|- ( ( suc A e. x /\ ( R1 ` A ) e. ( R1 ` suc A ) ) -> E. y e. x ( R1 ` A ) e. ( R1 ` y ) ) |
| 75 |
65 71 74
|
syl2anc |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> E. y e. x ( R1 ` A ) e. ( R1 ` y ) ) |
| 76 |
|
eliun |
|- ( ( R1 ` A ) e. U_ y e. x ( R1 ` y ) <-> E. y e. x ( R1 ` A ) e. ( R1 ` y ) ) |
| 77 |
75 76
|
sylibr |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( R1 ` A ) e. U_ y e. x ( R1 ` y ) ) |
| 78 |
|
simpll |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> Lim x ) |
| 79 |
|
r1limg |
|- ( ( x e. dom R1 /\ Lim x ) -> ( R1 ` x ) = U_ y e. x ( R1 ` y ) ) |
| 80 |
66 78 79
|
syl2anc |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( R1 ` x ) = U_ y e. x ( R1 ` y ) ) |
| 81 |
77 80
|
eleqtrrd |
|- ( ( ( Lim x /\ suc A e. On ) /\ ( suc A C_ x /\ x e. dom R1 ) ) -> ( R1 ` A ) e. ( R1 ` x ) ) |
| 82 |
81
|
expr |
|- ( ( ( Lim x /\ suc A e. On ) /\ suc A C_ x ) -> ( x e. dom R1 -> ( R1 ` A ) e. ( R1 ` x ) ) ) |
| 83 |
82
|
a1d |
|- ( ( ( Lim x /\ suc A e. On ) /\ suc A C_ x ) -> ( A. y e. x ( suc A C_ y -> ( y e. dom R1 -> ( R1 ` A ) e. ( R1 ` y ) ) ) -> ( x e. dom R1 -> ( R1 ` A ) e. ( R1 ` x ) ) ) ) |
| 84 |
22 26 30 34 42 53 83
|
tfindsg |
|- ( ( ( B e. On /\ suc A e. On ) /\ suc A C_ B ) -> ( B e. dom R1 -> ( R1 ` A ) e. ( R1 ` B ) ) ) |
| 85 |
84
|
impr |
|- ( ( ( B e. On /\ suc A e. On ) /\ ( suc A C_ B /\ B e. dom R1 ) ) -> ( R1 ` A ) e. ( R1 ` B ) ) |
| 86 |
9 13 18 1 85
|
syl22anc |
|- ( ( B e. dom R1 /\ A e. B ) -> ( R1 ` A ) e. ( R1 ` B ) ) |
| 87 |
86
|
ex |
|- ( B e. dom R1 -> ( A e. B -> ( R1 ` A ) e. ( R1 ` B ) ) ) |