Step |
Hyp |
Ref |
Expression |
1 |
|
r1padd1.p |
|- P = ( Poly1 ` R ) |
2 |
|
r1padd1.u |
|- U = ( Base ` P ) |
3 |
|
r1padd1.n |
|- N = ( Unic1p ` R ) |
4 |
|
r1padd1.e |
|- E = ( rem1p ` R ) |
5 |
|
r1p0.r |
|- ( ph -> R e. Ring ) |
6 |
|
r1p0.d |
|- ( ph -> D e. N ) |
7 |
|
r1p0.0 |
|- .0. = ( 0g ` P ) |
8 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
9 |
5 8
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
10 |
9
|
fveq2d |
|- ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) |
11 |
10
|
oveq1d |
|- ( ph -> ( ( 0g ` R ) ( .s ` P ) .0. ) = ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) .0. ) ) |
12 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
13 |
5 12
|
syl |
|- ( ph -> P e. LMod ) |
14 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
15 |
2 7
|
ring0cl |
|- ( P e. Ring -> .0. e. U ) |
16 |
5 14 15
|
3syl |
|- ( ph -> .0. e. U ) |
17 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
18 |
|
eqid |
|- ( .s ` P ) = ( .s ` P ) |
19 |
|
eqid |
|- ( 0g ` ( Scalar ` P ) ) = ( 0g ` ( Scalar ` P ) ) |
20 |
2 17 18 19 7
|
lmod0vs |
|- ( ( P e. LMod /\ .0. e. U ) -> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) .0. ) = .0. ) |
21 |
13 16 20
|
syl2anc |
|- ( ph -> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) .0. ) = .0. ) |
22 |
11 21
|
eqtrd |
|- ( ph -> ( ( 0g ` R ) ( .s ` P ) .0. ) = .0. ) |
23 |
22
|
oveq1d |
|- ( ph -> ( ( ( 0g ` R ) ( .s ` P ) .0. ) E D ) = ( .0. E D ) ) |
24 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
25 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
26 |
24 25
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
27 |
5 26
|
syl |
|- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
28 |
1 2 3 4 5 16 6 18 24 27
|
r1pvsca |
|- ( ph -> ( ( ( 0g ` R ) ( .s ` P ) .0. ) E D ) = ( ( 0g ` R ) ( .s ` P ) ( .0. E D ) ) ) |
29 |
10
|
oveq1d |
|- ( ph -> ( ( 0g ` R ) ( .s ` P ) ( .0. E D ) ) = ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( .0. E D ) ) ) |
30 |
4 1 2 3
|
r1pcl |
|- ( ( R e. Ring /\ .0. e. U /\ D e. N ) -> ( .0. E D ) e. U ) |
31 |
5 16 6 30
|
syl3anc |
|- ( ph -> ( .0. E D ) e. U ) |
32 |
2 17 18 19 7
|
lmod0vs |
|- ( ( P e. LMod /\ ( .0. E D ) e. U ) -> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( .0. E D ) ) = .0. ) |
33 |
13 31 32
|
syl2anc |
|- ( ph -> ( ( 0g ` ( Scalar ` P ) ) ( .s ` P ) ( .0. E D ) ) = .0. ) |
34 |
28 29 33
|
3eqtrd |
|- ( ph -> ( ( ( 0g ` R ) ( .s ` P ) .0. ) E D ) = .0. ) |
35 |
23 34
|
eqtr3d |
|- ( ph -> ( .0. E D ) = .0. ) |