Step |
Hyp |
Ref |
Expression |
1 |
|
r1pval.e |
|- E = ( rem1p ` R ) |
2 |
|
r1pval.p |
|- P = ( Poly1 ` R ) |
3 |
|
r1pval.b |
|- B = ( Base ` P ) |
4 |
|
r1pcl.c |
|- C = ( Unic1p ` R ) |
5 |
|
simp2 |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> F e. B ) |
6 |
2 3 4
|
uc1pcl |
|- ( G e. C -> G e. B ) |
7 |
6
|
3ad2ant3 |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> G e. B ) |
8 |
|
eqid |
|- ( quot1p ` R ) = ( quot1p ` R ) |
9 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
10 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
11 |
1 2 3 8 9 10
|
r1pval |
|- ( ( F e. B /\ G e. B ) -> ( F E G ) = ( F ( -g ` P ) ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
12 |
5 7 11
|
syl2anc |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( F E G ) = ( F ( -g ` P ) ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) ) |
13 |
2
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
14 |
13
|
3ad2ant1 |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> P e. Ring ) |
15 |
|
ringgrp |
|- ( P e. Ring -> P e. Grp ) |
16 |
14 15
|
syl |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> P e. Grp ) |
17 |
8 2 3 4
|
q1pcl |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( F ( quot1p ` R ) G ) e. B ) |
18 |
3 9
|
ringcl |
|- ( ( P e. Ring /\ ( F ( quot1p ` R ) G ) e. B /\ G e. B ) -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) e. B ) |
19 |
14 17 7 18
|
syl3anc |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) e. B ) |
20 |
3 10
|
grpsubcl |
|- ( ( P e. Grp /\ F e. B /\ ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) e. B ) -> ( F ( -g ` P ) ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) e. B ) |
21 |
16 5 19 20
|
syl3anc |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( F ( -g ` P ) ( ( F ( quot1p ` R ) G ) ( .r ` P ) G ) ) e. B ) |
22 |
12 21
|
eqeltrd |
|- ( ( R e. Ring /\ F e. B /\ G e. C ) -> ( F E G ) e. B ) |