Step |
Hyp |
Ref |
Expression |
1 |
|
r1padd1.p |
|- P = ( Poly1 ` R ) |
2 |
|
r1padd1.u |
|- U = ( Base ` P ) |
3 |
|
r1padd1.n |
|- N = ( Unic1p ` R ) |
4 |
|
r1padd1.e |
|- E = ( rem1p ` R ) |
5 |
|
r1pcyc.p |
|- .+ = ( +g ` P ) |
6 |
|
r1pcyc.m |
|- .x. = ( .r ` P ) |
7 |
|
r1pcyc.r |
|- ( ph -> R e. Ring ) |
8 |
|
r1pcyc.a |
|- ( ph -> A e. U ) |
9 |
|
r1pcyc.b |
|- ( ph -> B e. N ) |
10 |
|
r1pcyc.c |
|- ( ph -> C e. U ) |
11 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
12 |
7 11
|
syl |
|- ( ph -> P e. Ring ) |
13 |
12
|
ringgrpd |
|- ( ph -> P e. Grp ) |
14 |
|
eqid |
|- ( quot1p ` R ) = ( quot1p ` R ) |
15 |
14 1 2 3
|
q1pcl |
|- ( ( R e. Ring /\ A e. U /\ B e. N ) -> ( A ( quot1p ` R ) B ) e. U ) |
16 |
7 8 9 15
|
syl3anc |
|- ( ph -> ( A ( quot1p ` R ) B ) e. U ) |
17 |
1 2 3
|
uc1pcl |
|- ( B e. N -> B e. U ) |
18 |
9 17
|
syl |
|- ( ph -> B e. U ) |
19 |
2 6 12 16 18
|
ringcld |
|- ( ph -> ( ( A ( quot1p ` R ) B ) .x. B ) e. U ) |
20 |
2 6 12 10 18
|
ringcld |
|- ( ph -> ( C .x. B ) e. U ) |
21 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
22 |
2 5 21
|
grppnpcan2 |
|- ( ( P e. Grp /\ ( A e. U /\ ( ( A ( quot1p ` R ) B ) .x. B ) e. U /\ ( C .x. B ) e. U ) ) -> ( ( A .+ ( C .x. B ) ) ( -g ` P ) ( ( ( A ( quot1p ` R ) B ) .x. B ) .+ ( C .x. B ) ) ) = ( A ( -g ` P ) ( ( A ( quot1p ` R ) B ) .x. B ) ) ) |
23 |
13 8 19 20 22
|
syl13anc |
|- ( ph -> ( ( A .+ ( C .x. B ) ) ( -g ` P ) ( ( ( A ( quot1p ` R ) B ) .x. B ) .+ ( C .x. B ) ) ) = ( A ( -g ` P ) ( ( A ( quot1p ` R ) B ) .x. B ) ) ) |
24 |
2 5 13 8 20
|
grpcld |
|- ( ph -> ( A .+ ( C .x. B ) ) e. U ) |
25 |
4 1 2 14 6 21
|
r1pval |
|- ( ( ( A .+ ( C .x. B ) ) e. U /\ B e. U ) -> ( ( A .+ ( C .x. B ) ) E B ) = ( ( A .+ ( C .x. B ) ) ( -g ` P ) ( ( ( A .+ ( C .x. B ) ) ( quot1p ` R ) B ) .x. B ) ) ) |
26 |
24 18 25
|
syl2anc |
|- ( ph -> ( ( A .+ ( C .x. B ) ) E B ) = ( ( A .+ ( C .x. B ) ) ( -g ` P ) ( ( ( A .+ ( C .x. B ) ) ( quot1p ` R ) B ) .x. B ) ) ) |
27 |
14 1 2 3
|
q1pcl |
|- ( ( R e. Ring /\ ( C .x. B ) e. U /\ B e. N ) -> ( ( C .x. B ) ( quot1p ` R ) B ) e. U ) |
28 |
7 20 9 27
|
syl3anc |
|- ( ph -> ( ( C .x. B ) ( quot1p ` R ) B ) e. U ) |
29 |
2 5 6
|
ringdir |
|- ( ( P e. Ring /\ ( ( A ( quot1p ` R ) B ) e. U /\ ( ( C .x. B ) ( quot1p ` R ) B ) e. U /\ B e. U ) ) -> ( ( ( A ( quot1p ` R ) B ) .+ ( ( C .x. B ) ( quot1p ` R ) B ) ) .x. B ) = ( ( ( A ( quot1p ` R ) B ) .x. B ) .+ ( ( ( C .x. B ) ( quot1p ` R ) B ) .x. B ) ) ) |
30 |
12 16 28 18 29
|
syl13anc |
|- ( ph -> ( ( ( A ( quot1p ` R ) B ) .+ ( ( C .x. B ) ( quot1p ` R ) B ) ) .x. B ) = ( ( ( A ( quot1p ` R ) B ) .x. B ) .+ ( ( ( C .x. B ) ( quot1p ` R ) B ) .x. B ) ) ) |
31 |
1 2 3 14 7 8 9 20 5
|
q1pdir |
|- ( ph -> ( ( A .+ ( C .x. B ) ) ( quot1p ` R ) B ) = ( ( A ( quot1p ` R ) B ) .+ ( ( C .x. B ) ( quot1p ` R ) B ) ) ) |
32 |
31
|
oveq1d |
|- ( ph -> ( ( ( A .+ ( C .x. B ) ) ( quot1p ` R ) B ) .x. B ) = ( ( ( A ( quot1p ` R ) B ) .+ ( ( C .x. B ) ( quot1p ` R ) B ) ) .x. B ) ) |
33 |
|
eqid |
|- ( ||r ` P ) = ( ||r ` P ) |
34 |
2 33 6
|
dvdsrmul |
|- ( ( B e. U /\ C e. U ) -> B ( ||r ` P ) ( C .x. B ) ) |
35 |
18 10 34
|
syl2anc |
|- ( ph -> B ( ||r ` P ) ( C .x. B ) ) |
36 |
1 33 2 3 6 14
|
dvdsq1p |
|- ( ( R e. Ring /\ ( C .x. B ) e. U /\ B e. N ) -> ( B ( ||r ` P ) ( C .x. B ) <-> ( C .x. B ) = ( ( ( C .x. B ) ( quot1p ` R ) B ) .x. B ) ) ) |
37 |
7 20 9 36
|
syl3anc |
|- ( ph -> ( B ( ||r ` P ) ( C .x. B ) <-> ( C .x. B ) = ( ( ( C .x. B ) ( quot1p ` R ) B ) .x. B ) ) ) |
38 |
35 37
|
mpbid |
|- ( ph -> ( C .x. B ) = ( ( ( C .x. B ) ( quot1p ` R ) B ) .x. B ) ) |
39 |
38
|
oveq2d |
|- ( ph -> ( ( ( A ( quot1p ` R ) B ) .x. B ) .+ ( C .x. B ) ) = ( ( ( A ( quot1p ` R ) B ) .x. B ) .+ ( ( ( C .x. B ) ( quot1p ` R ) B ) .x. B ) ) ) |
40 |
30 32 39
|
3eqtr4d |
|- ( ph -> ( ( ( A .+ ( C .x. B ) ) ( quot1p ` R ) B ) .x. B ) = ( ( ( A ( quot1p ` R ) B ) .x. B ) .+ ( C .x. B ) ) ) |
41 |
40
|
oveq2d |
|- ( ph -> ( ( A .+ ( C .x. B ) ) ( -g ` P ) ( ( ( A .+ ( C .x. B ) ) ( quot1p ` R ) B ) .x. B ) ) = ( ( A .+ ( C .x. B ) ) ( -g ` P ) ( ( ( A ( quot1p ` R ) B ) .x. B ) .+ ( C .x. B ) ) ) ) |
42 |
26 41
|
eqtrd |
|- ( ph -> ( ( A .+ ( C .x. B ) ) E B ) = ( ( A .+ ( C .x. B ) ) ( -g ` P ) ( ( ( A ( quot1p ` R ) B ) .x. B ) .+ ( C .x. B ) ) ) ) |
43 |
4 1 2 14 6 21
|
r1pval |
|- ( ( A e. U /\ B e. U ) -> ( A E B ) = ( A ( -g ` P ) ( ( A ( quot1p ` R ) B ) .x. B ) ) ) |
44 |
8 18 43
|
syl2anc |
|- ( ph -> ( A E B ) = ( A ( -g ` P ) ( ( A ( quot1p ` R ) B ) .x. B ) ) ) |
45 |
23 42 44
|
3eqtr4d |
|- ( ph -> ( ( A .+ ( C .x. B ) ) E B ) = ( A E B ) ) |