Step |
Hyp |
Ref |
Expression |
1 |
|
r1pid2.p |
|- P = ( Poly1 ` R ) |
2 |
|
r1pid2.u |
|- U = ( Base ` P ) |
3 |
|
r1pid2.n |
|- N = ( Unic1p ` R ) |
4 |
|
r1pid2.e |
|- E = ( rem1p ` R ) |
5 |
|
r1pid2.d |
|- D = ( deg1 ` R ) |
6 |
|
r1pid2.r |
|- ( ph -> R e. Domn ) |
7 |
|
r1pid2.a |
|- ( ph -> A e. U ) |
8 |
|
r1pid2.b |
|- ( ph -> B e. N ) |
9 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
10 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
11 |
|
domnring |
|- ( R e. Domn -> R e. Ring ) |
12 |
6 11
|
syl |
|- ( ph -> R e. Ring ) |
13 |
|
eqid |
|- ( quot1p ` R ) = ( quot1p ` R ) |
14 |
13 1 2 3
|
q1pcl |
|- ( ( R e. Ring /\ A e. U /\ B e. N ) -> ( A ( quot1p ` R ) B ) e. U ) |
15 |
12 7 8 14
|
syl3anc |
|- ( ph -> ( A ( quot1p ` R ) B ) e. U ) |
16 |
1 2 3
|
uc1pcl |
|- ( B e. N -> B e. U ) |
17 |
8 16
|
syl |
|- ( ph -> B e. U ) |
18 |
1 9 3
|
uc1pn0 |
|- ( B e. N -> B =/= ( 0g ` P ) ) |
19 |
8 18
|
syl |
|- ( ph -> B =/= ( 0g ` P ) ) |
20 |
17 19
|
eldifsnd |
|- ( ph -> B e. ( U \ { ( 0g ` P ) } ) ) |
21 |
1
|
ply1domn |
|- ( R e. Domn -> P e. Domn ) |
22 |
6 21
|
syl |
|- ( ph -> P e. Domn ) |
23 |
2 9 10 15 20 22
|
domneq0r |
|- ( ph -> ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) = ( 0g ` P ) <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
24 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
25 |
1 2 3 13 4 10 24
|
r1pid |
|- ( ( R e. Ring /\ A e. U /\ B e. N ) -> A = ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) ) |
26 |
12 7 8 25
|
syl3anc |
|- ( ph -> A = ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) ) |
27 |
26
|
eqeq2d |
|- ( ph -> ( ( A E B ) = A <-> ( A E B ) = ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) ) ) |
28 |
|
eqcom |
|- ( ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( A E B ) <-> ( A E B ) = ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) ) |
29 |
27 28
|
bitr4di |
|- ( ph -> ( ( A E B ) = A <-> ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( A E B ) ) ) |
30 |
|
domnring |
|- ( P e. Domn -> P e. Ring ) |
31 |
22 30
|
syl |
|- ( ph -> P e. Ring ) |
32 |
31
|
ringgrpd |
|- ( ph -> P e. Grp ) |
33 |
4 1 2 3
|
r1pcl |
|- ( ( R e. Ring /\ A e. U /\ B e. N ) -> ( A E B ) e. U ) |
34 |
12 7 8 33
|
syl3anc |
|- ( ph -> ( A E B ) e. U ) |
35 |
2 24 9 32 34
|
grplidd |
|- ( ph -> ( ( 0g ` P ) ( +g ` P ) ( A E B ) ) = ( A E B ) ) |
36 |
35
|
eqeq2d |
|- ( ph -> ( ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( ( 0g ` P ) ( +g ` P ) ( A E B ) ) <-> ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( A E B ) ) ) |
37 |
2 10 31 15 17
|
ringcld |
|- ( ph -> ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) e. U ) |
38 |
2 9
|
ring0cl |
|- ( P e. Ring -> ( 0g ` P ) e. U ) |
39 |
31 38
|
syl |
|- ( ph -> ( 0g ` P ) e. U ) |
40 |
2 24
|
grprcan |
|- ( ( P e. Grp /\ ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) e. U /\ ( 0g ` P ) e. U /\ ( A E B ) e. U ) ) -> ( ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( ( 0g ` P ) ( +g ` P ) ( A E B ) ) <-> ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) = ( 0g ` P ) ) ) |
41 |
32 37 39 34 40
|
syl13anc |
|- ( ph -> ( ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( ( 0g ` P ) ( +g ` P ) ( A E B ) ) <-> ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) = ( 0g ` P ) ) ) |
42 |
29 36 41
|
3bitr2d |
|- ( ph -> ( ( A E B ) = A <-> ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) = ( 0g ` P ) ) ) |
43 |
2 10 9 31 17
|
ringlzd |
|- ( ph -> ( ( 0g ` P ) ( .r ` P ) B ) = ( 0g ` P ) ) |
44 |
43
|
oveq2d |
|- ( ph -> ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) = ( A ( -g ` P ) ( 0g ` P ) ) ) |
45 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
46 |
2 9 45
|
grpsubid1 |
|- ( ( P e. Grp /\ A e. U ) -> ( A ( -g ` P ) ( 0g ` P ) ) = A ) |
47 |
32 7 46
|
syl2anc |
|- ( ph -> ( A ( -g ` P ) ( 0g ` P ) ) = A ) |
48 |
44 47
|
eqtr2d |
|- ( ph -> A = ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) |
49 |
48
|
fveq2d |
|- ( ph -> ( D ` A ) = ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) ) |
50 |
49
|
breq1d |
|- ( ph -> ( ( D ` A ) < ( D ` B ) <-> ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) ) ) |
51 |
39
|
biantrurd |
|- ( ph -> ( ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) <-> ( ( 0g ` P ) e. U /\ ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) ) ) ) |
52 |
13 1 2 5 45 10 3
|
q1peqb |
|- ( ( R e. Ring /\ A e. U /\ B e. N ) -> ( ( ( 0g ` P ) e. U /\ ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) ) <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
53 |
12 7 8 52
|
syl3anc |
|- ( ph -> ( ( ( 0g ` P ) e. U /\ ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) ) <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
54 |
50 51 53
|
3bitrd |
|- ( ph -> ( ( D ` A ) < ( D ` B ) <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
55 |
23 42 54
|
3bitr4d |
|- ( ph -> ( ( A E B ) = A <-> ( D ` A ) < ( D ` B ) ) ) |