Step |
Hyp |
Ref |
Expression |
1 |
|
r1padd1.p |
|- P = ( Poly1 ` R ) |
2 |
|
r1padd1.u |
|- U = ( Base ` P ) |
3 |
|
r1padd1.n |
|- N = ( Unic1p ` R ) |
4 |
|
r1padd1.e |
|- E = ( rem1p ` R ) |
5 |
|
r1pid2.r |
|- ( ph -> R e. IDomn ) |
6 |
|
r1pid2.d |
|- D = ( deg1 ` R ) |
7 |
|
r1pid2.p |
|- ( ph -> A e. U ) |
8 |
|
r1pid2.q |
|- ( ph -> B e. N ) |
9 |
5
|
idomringd |
|- ( ph -> R e. Ring ) |
10 |
|
eqid |
|- ( quot1p ` R ) = ( quot1p ` R ) |
11 |
|
eqid |
|- ( .r ` P ) = ( .r ` P ) |
12 |
|
eqid |
|- ( +g ` P ) = ( +g ` P ) |
13 |
1 2 3 10 4 11 12
|
r1pid |
|- ( ( R e. Ring /\ A e. U /\ B e. N ) -> A = ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) ) |
14 |
9 7 8 13
|
syl3anc |
|- ( ph -> A = ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) ) |
15 |
14
|
eqeq2d |
|- ( ph -> ( ( A E B ) = A <-> ( A E B ) = ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) ) ) |
16 |
|
eqcom |
|- ( ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( A E B ) <-> ( A E B ) = ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) ) |
17 |
15 16
|
bitr4di |
|- ( ph -> ( ( A E B ) = A <-> ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( A E B ) ) ) |
18 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
19 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
20 |
9 19
|
syl |
|- ( ph -> P e. Ring ) |
21 |
20
|
ringgrpd |
|- ( ph -> P e. Grp ) |
22 |
4 1 2 3
|
r1pcl |
|- ( ( R e. Ring /\ A e. U /\ B e. N ) -> ( A E B ) e. U ) |
23 |
9 7 8 22
|
syl3anc |
|- ( ph -> ( A E B ) e. U ) |
24 |
2 12 18 21 23
|
grplidd |
|- ( ph -> ( ( 0g ` P ) ( +g ` P ) ( A E B ) ) = ( A E B ) ) |
25 |
24
|
eqeq2d |
|- ( ph -> ( ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( ( 0g ` P ) ( +g ` P ) ( A E B ) ) <-> ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( A E B ) ) ) |
26 |
10 1 2 3
|
q1pcl |
|- ( ( R e. Ring /\ A e. U /\ B e. N ) -> ( A ( quot1p ` R ) B ) e. U ) |
27 |
9 7 8 26
|
syl3anc |
|- ( ph -> ( A ( quot1p ` R ) B ) e. U ) |
28 |
1 2 3
|
uc1pcl |
|- ( B e. N -> B e. U ) |
29 |
8 28
|
syl |
|- ( ph -> B e. U ) |
30 |
2 11 20 27 29
|
ringcld |
|- ( ph -> ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) e. U ) |
31 |
2 18
|
ring0cl |
|- ( P e. Ring -> ( 0g ` P ) e. U ) |
32 |
9 19 31
|
3syl |
|- ( ph -> ( 0g ` P ) e. U ) |
33 |
2 12
|
grprcan |
|- ( ( P e. Grp /\ ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) e. U /\ ( 0g ` P ) e. U /\ ( A E B ) e. U ) ) -> ( ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( ( 0g ` P ) ( +g ` P ) ( A E B ) ) <-> ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) = ( 0g ` P ) ) ) |
34 |
21 30 32 23 33
|
syl13anc |
|- ( ph -> ( ( ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ( +g ` P ) ( A E B ) ) = ( ( 0g ` P ) ( +g ` P ) ( A E B ) ) <-> ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) = ( 0g ` P ) ) ) |
35 |
17 25 34
|
3bitr2d |
|- ( ph -> ( ( A E B ) = A <-> ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) = ( 0g ` P ) ) ) |
36 |
|
isidom |
|- ( R e. IDomn <-> ( R e. CRing /\ R e. Domn ) ) |
37 |
5 36
|
sylib |
|- ( ph -> ( R e. CRing /\ R e. Domn ) ) |
38 |
37
|
simpld |
|- ( ph -> R e. CRing ) |
39 |
1
|
ply1crng |
|- ( R e. CRing -> P e. CRing ) |
40 |
38 39
|
syl |
|- ( ph -> P e. CRing ) |
41 |
2 11
|
crngcom |
|- ( ( P e. CRing /\ B e. U /\ ( A ( quot1p ` R ) B ) e. U ) -> ( B ( .r ` P ) ( A ( quot1p ` R ) B ) ) = ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ) |
42 |
40 29 27 41
|
syl3anc |
|- ( ph -> ( B ( .r ` P ) ( A ( quot1p ` R ) B ) ) = ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) ) |
43 |
42
|
eqeq1d |
|- ( ph -> ( ( B ( .r ` P ) ( A ( quot1p ` R ) B ) ) = ( 0g ` P ) <-> ( ( A ( quot1p ` R ) B ) ( .r ` P ) B ) = ( 0g ` P ) ) ) |
44 |
5
|
idomdomd |
|- ( ph -> R e. Domn ) |
45 |
1
|
ply1domn |
|- ( R e. Domn -> P e. Domn ) |
46 |
44 45
|
syl |
|- ( ph -> P e. Domn ) |
47 |
1 18 3
|
uc1pn0 |
|- ( B e. N -> B =/= ( 0g ` P ) ) |
48 |
8 47
|
syl |
|- ( ph -> B =/= ( 0g ` P ) ) |
49 |
|
eqid |
|- ( RLReg ` P ) = ( RLReg ` P ) |
50 |
2 49 18
|
domnrrg |
|- ( ( P e. Domn /\ B e. U /\ B =/= ( 0g ` P ) ) -> B e. ( RLReg ` P ) ) |
51 |
46 29 48 50
|
syl3anc |
|- ( ph -> B e. ( RLReg ` P ) ) |
52 |
49 2 11 18
|
rrgeq0 |
|- ( ( P e. Ring /\ B e. ( RLReg ` P ) /\ ( A ( quot1p ` R ) B ) e. U ) -> ( ( B ( .r ` P ) ( A ( quot1p ` R ) B ) ) = ( 0g ` P ) <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
53 |
20 51 27 52
|
syl3anc |
|- ( ph -> ( ( B ( .r ` P ) ( A ( quot1p ` R ) B ) ) = ( 0g ` P ) <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
54 |
35 43 53
|
3bitr2d |
|- ( ph -> ( ( A E B ) = A <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
55 |
2 11 18 20 29
|
ringlzd |
|- ( ph -> ( ( 0g ` P ) ( .r ` P ) B ) = ( 0g ` P ) ) |
56 |
55
|
oveq2d |
|- ( ph -> ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) = ( A ( -g ` P ) ( 0g ` P ) ) ) |
57 |
|
eqid |
|- ( -g ` P ) = ( -g ` P ) |
58 |
2 18 57
|
grpsubid1 |
|- ( ( P e. Grp /\ A e. U ) -> ( A ( -g ` P ) ( 0g ` P ) ) = A ) |
59 |
21 7 58
|
syl2anc |
|- ( ph -> ( A ( -g ` P ) ( 0g ` P ) ) = A ) |
60 |
56 59
|
eqtr2d |
|- ( ph -> A = ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) |
61 |
60
|
fveq2d |
|- ( ph -> ( D ` A ) = ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) ) |
62 |
61
|
breq1d |
|- ( ph -> ( ( D ` A ) < ( D ` B ) <-> ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) ) ) |
63 |
32
|
biantrurd |
|- ( ph -> ( ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) <-> ( ( 0g ` P ) e. U /\ ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) ) ) ) |
64 |
10 1 2 6 57 11 3
|
q1peqb |
|- ( ( R e. Ring /\ A e. U /\ B e. N ) -> ( ( ( 0g ` P ) e. U /\ ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) ) <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
65 |
9 7 8 64
|
syl3anc |
|- ( ph -> ( ( ( 0g ` P ) e. U /\ ( D ` ( A ( -g ` P ) ( ( 0g ` P ) ( .r ` P ) B ) ) ) < ( D ` B ) ) <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
66 |
62 63 65
|
3bitrd |
|- ( ph -> ( ( D ` A ) < ( D ` B ) <-> ( A ( quot1p ` R ) B ) = ( 0g ` P ) ) ) |
67 |
54 66
|
bitr4d |
|- ( ph -> ( ( A E B ) = A <-> ( D ` A ) < ( D ` B ) ) ) |